Abstract
With the advent of deep convolutional neural networks, machines now rival humans in terms of object categorization. The neural networks solve categorization with a hierarchical organization that shares a striking resemblance to their biological counterpart, leading to their status as a standard model of object recognition in biological vision. Despite training on thousands of images of object categories, however, machine-learning networks are poorer generalizers, often fooled by adversarial images with very simple image manipulations that humans easily distinguish as a false image. Humans, on the other hand, can generalize object classes from very few samples. Here we provide a dataset of novel object classifications in humans. We gathered thousands of crowd-sourced human responses to novel objects embedded either with 1 or 16 context sample(s). Human decisions and stimuli together have the potential to be re-used (1) as a tool to better understand the nature of the gap in category learning from few samples between human and machine, and (2) as a benchmark of generalization across machine learning networks.
Original language | English |
---|---|
Article number | 105302 |
Journal | Data in Brief |
Volume | 29 |
DOIs | |
Publication status | Published - Apr 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 The Author(s)