Abstract
Eumycetoma is a subcutaneous implantation mycosis often found in the foot. One of the hallmarks of eumycetoma is the formation of grains. These grains are either black or white, and the consistency and morphology differs per causative agent. The two most common causative agents of black-grain eumycetoma are Madurella mycetomatis and Falciformispora senegalensis. Since grains cannot be formed in vitro, in vivo models are needed to study grain formation. Here, we used the invertebrate Galleria mellonella to establish an in vivo grain model for F. senegalensis. Three different F. senegalensis strains were selected, and four different inocula were used to infect G. mellonella larvae, ranging from 0.04 mg/larvae to 10 mg/larvae. Larval survival was monitored for 10 days. Grain formation was studied macroscopically and histologically. The efficacy of antifungal therapy was determined for itraconazole, amphotericin B, and terbinafine. A concentration of 10 mg F. senegalensis per larva was lethal for the majority of the larvae within 10 days. At this inoculum, grains were formed within 24 h after infection. The grains produced in the larvae resembled those formed in human patients. Amphotericin B given at 1 mg/kg 4 h, 28 h, and 52 h after infection prolonged larval survival. No enhanced survival was noted for itraconazole or terbinafine. In conclusion, we developed a F. senegalensis grain model in G. mellonella larvae in which grains were formed that were similar to those formed in patients. This model can be used to monitor grain formation over time and study antifungal efficacy.
Original language | English |
---|---|
Article number | myad070 |
Journal | Medical Mycology |
Volume | 61 |
Issue number | 8 |
Early online date | 14 Jul 2023 |
DOIs | |
Publication status | Published - 1 Aug 2023 |
Bibliographical note
Funding Information:This work was supported by Aspasia grant 015.013.033 from the Dutch Research Council and an EUR fellowship from the Erasmus University, both awarded to Wendy van de Sande. J.M. was supported by CSC Scholarship 202008520048. The funders had no role in the design, data collection, interpretation, or decision to publish.
Publisher Copyright:
© 2023 The Author(s).