A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry

Bram Carlier, Sophie V. Heymans, Sjoerd Nooijens, Gonzalo Collado-Lara, Yosra Toumia, Laurence Delombaerde, Gaio Paradossi, Jan D’hooge, Koen Van Den Abeele, Edmond Sterpin, Uwe Himmelreich*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Downloads (Pure)

Abstract

Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.

Original languageEnglish
Article number629
JournalPharmaceuticals
Volume17
Issue number5
DOIs
Publication statusPublished - May 2024

Bibliographical note

Publisher Copyright: © 2024 by the authors.

Fingerprint

Dive into the research topics of 'A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry'. Together they form a unique fingerprint.

Cite this