A robust bootstrap test for mediation analysis

Research output: Contribution to journalArticleAcademicpeer-review

56 Citations (Scopus)
224 Downloads (Pure)


Mediation analysis is central to theory building and testing in organizational sciences. Scholars often use linear regression analysis based on normal-theory maximum likelihood estimators to test mediation. However, these estimators are very sensitive to deviations from normality assumptions, such as outliers, heavy tails, or skewness of the observed distribution. This sensitivity seriously threatens the empirical testing of theory about mediation mechanisms. To overcome this threat, we develop a robust mediation method that yields reliable results even when the data deviate from normality assumptions. We demonstrate the mechanics of our proposed method in an illustrative case, while simulation studies show that our method is both superior in estimating the effect size and more reliable in assessing its significance than the existing methods. Furthermore, we provide freely available software in R and SPSS to enhance its accessibility and adoption by empirical researchers.

Original languageEnglish
Pages (from-to)591-617
Number of pages27
JournalOrganizational Research Methods
Issue number3
Publication statusPublished - 2022

Bibliographical note

Funding Information:
This work was partially supported by a grant from the Dutch Research Council (NWO), research program Vidi (Project No. VI.Vidi.195.141).

Publisher Copyright:
© The Author(s) 2021.


Dive into the research topics of 'A robust bootstrap test for mediation analysis'. Together they form a unique fingerprint.

Cite this