Adaptive mixture of student-t distribution as a flexible candidate distribution for efficient simulation: the R package AdMit

D (David) Ardia, LF Hoogerheide, Herman van Dijk

Research output: Contribution to journalArticleAcademicpeer-review

19 Citations (Scopus)

Abstract

This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.
Original languageEnglish
Pages (from-to)1-32
Number of pages32
JournalJournal of Statistical Software
Volume29
Issue number3
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'Adaptive mixture of student-t distribution as a flexible candidate distribution for efficient simulation: the R package AdMit'. Together they form a unique fingerprint.

Cite this