Alternative Asymmetric Stochastic Volatility Models

M Asai, Michael McAleer

Research output: Contribution to journalArticleAcademicpeer-review

24 Citations (Scopus)

Abstract

The stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is a generalization of the exponential GARCH (EGARCH) model of Nelson (1991). We consider categories for asymmetric effects, which describes the difference among the asymmetric effect of the EGARCH model, the threshold effects indicator function of Glosten et al. (1992), and the negative correlation between the innovations in returns and volatility. The new model is estimated by the efficient importance sampling method of Liesenfeld and Richard (2003), and the finite sample properties of the estimator are investigated using numerical simulations. Four financial time series are used to estimate the alternative asymmetric stochastic volatility (SV) models, with empirical asymmetric effects found to be statistically significant in each case. The empirical results for S&P 500 and Yen/USD returns indicate that the leverage and size effects are significant, supporting the general model. For Tokyo stock price index (TOPIX) and USD/AUD returns, the size effect is insignificant, favoring the negative correlation between the innovations in returns and volatility. We also consider standardized t distribution for capturing the tail behavior. The results for Yen/USD returns show that the model is correctly specified, while the results for three other data sets suggest there is scope for improvement.
Original languageEnglish
Pages (from-to)548-564
Number of pages17
JournalEconometric Reviews
Volume30
Issue number5
DOIs
Publication statusPublished - 2011

Fingerprint

Dive into the research topics of 'Alternative Asymmetric Stochastic Volatility Models'. Together they form a unique fingerprint.

Cite this