An algorithm to identify antidepressant users with a diagnosis of depression from prescription data

H Gardarsdottir, ACG Egberts, L van Dijk, MCJM Sturkenboom, ER Heerdink

Research output: Contribution to journalArticleAcademicpeer-review

26 Citations (Scopus)


Purpose Antidepressants are used for many indications besides depression. This makes investigating depression treatment outcomes in prescription databases problematic when the indication is unknown. The aim Of Our study is to develop an algorithm to identify antidepressant drug users from prescription data that suffer from depression. Methods Data for deriving the algorithm were obtained from the Second Dutch National Survey of General Practice, carried out in 2001 by The Netherlands Institute for Health Services Research (NIVEL), and for validation the Integrated Primary Care Information (IPCI) database was used. Both sets included adults receiving their first antidepressant drug in 2001 (n = 1855 and 3321, respectively). The Outcome Was a registered diagnosis of depression. Covariates investigated for developing the algorithm were patient and prescribing characteristics, and co-medication. Results The predictive algorithm included age, SSRI prescribed on the index date, prescribed dose, general practitioner as prescriber and the number of antidepressant prescriptions prescribed plus medication for treating acid related disorders, laxatives. cardiac therapy or hypnotics/sedatives prescribed in the 6 months prior to index date. The probability that the algorithm correctly identified in antidepressant drug user as having a depression diagnosis was 79% with a sensitivity of 79.6% and a specificity of 66.9%. Conclusion In conclusion, we developed and validated an algorithm that can be used to compose cohorts of patients treated with antidepressants for depression from prescription databases. Copyright (C) 2008 John Wiley & Sons, Ltd.
Original languageUndefined/Unknown
Pages (from-to)7-15
Number of pages9
JournalPharmacoepidemiology and Drug Safety
Issue number1
Publication statusPublished - 2009

Cite this