TY - JOUR
T1 - Applications of biomimetic nanoparticles in breast cancer as a blueprint for improved next-generation cervical cancer therapy
AU - Farhoudi, Leila
AU - Fobian, Seth Frerich
AU - Oei, Arlene L.
AU - Amin, Mohamadreza
AU - Jaafari, Mahmoud Reza
AU - ten Hagen, Timo L.M.
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/12
Y1 - 2023/12
N2 - Nanomedicines are innovative and promising, but lack a convincing clinical presence. Thus, biomimetic nanoparticles (BMNPs) have been designed with functionalizations which structurally and/or functionally mimic the biological setting, endowing thereupon biological structure and functionality. These may be coated with biologically derived materials, but may also include artificial antigen-presenting cells and synthetic architectures. When applied in cancer theranostics, BMNPs show significant improvements over traditional drugs and similar non-biomimetic NPs, especially in terms of circulation time, tissue penetration, delivery, and lowered toxicity. These particles have achieved unprecedented outcomes through top-down synthesis methods (cell material to NP), which bypass complex bottom-up synthetic techniques attempting to mimic such complex and diverse biological components. Breast cancer has received much attention in this area, and as such, is studied in this paper as a template for how BMNPs could be applied in cervical cancer – an area with few BMNP applications and a dire need for efficacious and fertility-preserving therapies. This cancer remains an enormous burden globally, especially in developing countries. Being a virus-induced disease, biomimetic applications may be particularly promising, aligning with the emergence of biomimetic nanovaccines in recent years. Feasibility challenges remain within BMNPs: Extracting biological material for re-administration to patients could cause ethical debate, and the costs involved in preparing scaled up quantities of biomimetic NPs would be large. However, with a clearer understanding and tighter characterization of preparation methods and biological responses, BMNPs may add great value to the nanomedicine community.
AB - Nanomedicines are innovative and promising, but lack a convincing clinical presence. Thus, biomimetic nanoparticles (BMNPs) have been designed with functionalizations which structurally and/or functionally mimic the biological setting, endowing thereupon biological structure and functionality. These may be coated with biologically derived materials, but may also include artificial antigen-presenting cells and synthetic architectures. When applied in cancer theranostics, BMNPs show significant improvements over traditional drugs and similar non-biomimetic NPs, especially in terms of circulation time, tissue penetration, delivery, and lowered toxicity. These particles have achieved unprecedented outcomes through top-down synthesis methods (cell material to NP), which bypass complex bottom-up synthetic techniques attempting to mimic such complex and diverse biological components. Breast cancer has received much attention in this area, and as such, is studied in this paper as a template for how BMNPs could be applied in cervical cancer – an area with few BMNP applications and a dire need for efficacious and fertility-preserving therapies. This cancer remains an enormous burden globally, especially in developing countries. Being a virus-induced disease, biomimetic applications may be particularly promising, aligning with the emergence of biomimetic nanovaccines in recent years. Feasibility challenges remain within BMNPs: Extracting biological material for re-administration to patients could cause ethical debate, and the costs involved in preparing scaled up quantities of biomimetic NPs would be large. However, with a clearer understanding and tighter characterization of preparation methods and biological responses, BMNPs may add great value to the nanomedicine community.
UR - http://www.scopus.com/inward/record.url?scp=85174709367&partnerID=8YFLogxK
U2 - 10.1016/j.nantod.2023.102032
DO - 10.1016/j.nantod.2023.102032
M3 - Review article
AN - SCOPUS:85174709367
SN - 1748-0132
VL - 53
JO - Nano Today
JF - Nano Today
M1 - 102032
ER -