Assessing Trustworthy AI in Times of COVID-19. Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients

Himanshi Allahabadi, Julia Amann, Isabelle Balot, Andrea Beretta, Charles Binkley, Jonas Bozenhard, Frederick Bruneault, James Brusseau, Sema Candemir, Luca Alessandro Cappellini, Subrata Chakraborty, Nicoleta Cherciu, Christina Cociancig, Megan Coffee, Irene Ek, Leonardo Espinosa-Leal, Davide Farina, Genevieve Fieux-Castagnet, Thomas Frauenfelder, Alessio GallucciGuya Giuliani, Adam Golda, Irmhild van Halem, Elisabeth Hildt, Sune Holm, Georgios Kararigas, Sebastien A Krier, Ulrich Kuhne, Francesca Lizzi, Vince I Madai, Aniek F Markus, Serg Masis, Emilie Wiinblad Mathez, Francesco Mureddu, Emanuele Neri, Walter Osika, Matiss Ozols, Cecilia Panigutti, Brendan Parent, Francesca Pratesi, Pedro A Moreno-Sanchez, Giovanni Sartor, Mattia Savardi, Alberto Signoroni, Hanna-Maria Sormunen, Andy Spezzatti, Adarsh Srivastava, Annette F Stephansen, Lau Bee Theng, Jesmin Jahan Tithi, Jarno Tuominen, Steven Umbrello, Filippo Vaccher, Dennis Vetter, Magnus Westerlund, Renee Wurth, Roberto V Zicari

Research output: Contribution to journalArticleAcademicpeer-review

29 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Assessing Trustworthy AI in Times of COVID-19. Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients'. Together they form a unique fingerprint.

Social Sciences

Computer Science

Mathematics

Psychology