Association of phthalate exposure with thyroid function during pregnancy

Arash Derakhshan, Huan Shu, Maarten A.C. Broeren, Christian H. Lindh, Robin P. Peeters, Andreas Kortenkamp, Barbara Demeneix, Carl Gustaf Bornehag, Tim I.M. Korevaar*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

22 Citations (Scopus)
10 Downloads (Pure)

Abstract

Background: The extent of thyroid disruptive effects of phthalates during pregnancy remains unclear. Aim: To investigate the association of maternal urinary phthalates with markers of the thyroid system during early pregnancy. Methods: Urinary concentrations of phthalate metabolites and serum concentrations of thyroid stimulating hormone (TSH), free and total thyroxine (FT4 and TT4) and free and total triiodothyronine (FT3 and TT3) were measured in pregnant women in early pregnancy in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study (2007-ongoing), a population-based prospective cohort. Results: In the 1,996 included women, higher di-ethyl-hexyl phthalate (DEHP) metabolites were associated with a lower FT4 (β [SE] for the molar sum: −0.13 [0.06], P = 0.03) and a higher TSH/FT4 ratio (0.003 [0.001], P = 0.03). Higher concentrations of di-iso-nonyl phthalate (DINP) metabolites were associated with a lower TT4 (β [SE] for the molar sum: 0.93 [0.44], P = 0.03) as well as with lower TT4/FT4 and TT4/TT3 ratios. Higher metabolites of both dibutyl and butyl-benzyl phthalate (DBP and BBzP) were associated with lower T4/T3 ratio (free and total) and higher FT4/TT4 and FT3/TT3 ratios. A higher diisononyl cyclohexane dicarboxylate (DINCH) metabolite concentration was associated with a higher TT3. Conclusions: These results translate results from experimental studies suggesting that exposure to phthalates may interfere with the thyroid system during pregnancy. This is also true for compounds that have been introduced to replace known disruptive phthalates. Further experimental studies should take into account the human evidence to better investigate the potential underlying mechanisms of thyroid disruption by phthalates.

Original languageEnglish
Article number106795
JournalEnvironment international
Volume157
DOIs
Publication statusPublished - 1 Dec 2021

Bibliographical note

Funding Information:
We are grateful to all the participating families. We would like to thank the laboratory technicians Agneta Kristensen, Åsa Amilon, Margareta Maxe, for excellent assistance with LC-MS/MS analysis of phthalates in the population samples. This project has been supported by the Exchange in Endocrinology Expertise (3E) program of the European Union of Medical Specialists (UEMS), Section and Board of Endocrinology and the ATHENA project, funded under the European Union’s Horizon 2020 Programme for research, technological development and demonstration, grant agreement no. 825161. The SELMA study was funded by grants from the Swedish Research Council (Formas) and the Country Council of Värmland, Sweden.

Funding Information:
We are grateful to all the participating families. We would like to thank the laboratory technicians Agneta Kristensen, Åsa Amilon, Margareta Maxe, for excellent assistance with LC-MS/MS analysis of phthalates in the population samples. This project has been supported by the Exchange in Endocrinology Expertise (3E) program of the European Union of Medical Specialists (UEMS), Section and Board of Endocrinology and the ATHENA project, funded under the European Union's Horizon 2020 Programme for research, technological development and demonstration, grant agreement no. 825161. The SELMA study was funded by grants from the Swedish Research Council (Formas) and the Country Council of Värmland, Sweden.

Publisher Copyright:
© 2021 The Authors

Fingerprint

Dive into the research topics of 'Association of phthalate exposure with thyroid function during pregnancy'. Together they form a unique fingerprint.

Cite this