Abstract
Aim: To examine whether maternal angiogenic factors in the first half of pregnancy are associated with offspring left and right cardiac development. Methods: In a population-based prospective cohort among 2,415 women and their offspring, maternal first and second trimester plasma PlGF and sFlt-1 concentrations were measured. Cardiac MRI was performed in their offspring at 10 years. Results: Maternal angiogenic factors were not associated with childhood cardiac outcomes in the total population. In children born small-for-their-gestational-age, higher maternal first trimester PlGF concentrations were associated with a lower childhood left ventricular mass (-0.24 SDS [95%CI -0.42, -0.05 per SDS increase in maternal PlGF]), whereas higher sFlt-1 concentrations were associated with higher childhood left ventricular mass (0.22 SDS [95%CI 0.09, 0.34 per SDS increase in maternal sFlt-1]). Higher second trimester maternal sFlt-1 concentrations were also associated with higher childhood left ventricular mass (P-value <.05). In preterm born children, higher maternal first and second trimester sFlt-1/PlGF ratio were associated with higher childhood left ventricular mass (0.30 SDS [95%CI 0.01, 0.60], 0.22 SDS [95%CI -0.03, 0.40]) per SDS increase in maternal sFlt-1/PlGF ratio in first and second trimester respectively). No effects on other childhood cardiac outcomes were present within these higher-risk children. Conclusions: In a low-risk population, maternal angiogenic factors are not associated with childhood cardiac ventricular structure, and function within the normal range. In children born small for their gestational age or preterm, an imbalance in maternal angiogenic factors in the first half of pregnancy was associated with higher childhood left ventricular mass only.
Original language | English |
---|---|
Pages (from-to) | 100-111 |
Number of pages | 12 |
Journal | American Heart Journal |
Volume | 247 |
DOIs | |
Publication status | Published - May 2022 |
Bibliographical note
Funding Information:The Generation R Study is financially supported by the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam and the Netherlands Organization for Health Research and Development. Romy Gaillard received funding from the Dutch Heart Foundation (grant number 2017T013), the Dutch Diabetes Foundation (grant number 2017.81.002), the Netherlands Organization for Health Research and Development (NWO, ZonMW, grant number 543003109) and from the European Union's Horizon 2020 research and innovation programme under the ERA-NET Cofund action (no 727565), EndObesity, ZonMW the Netherlands (no. 529051026). Vincent Jaddoe received a grant from the Netherlands Organization for Health Research and Development (NWO, ZonMw-VIDI 016.136.361) and a European Research Council Consolidator Grant (ERC-2014-CoG-648916).
Publisher Copyright:
© 2022 The Authors