Abstract
This paper derives the statistical properties of a two-step approach to estimating multivariate rotated GARCH-BEKK (RBEKK) models. From the definition of RBEKK, the unconditional covariance matrix is estimated in the first step to rotate the observed variables in order to have the identity matrix for its sample covariance matrix. In the second step, the remaining parameters are estimated by maximizing the quasi-log-likelihood function. For this two-step quasi-maximum likelihood (2sQML) estimator, this paper shows consistency and asymptotic normality under weak conditions. While second-order moments are needed for the consistency of the estimated unconditional covariance matrix, the existence of the finite sixth-order moments is required for the convergence of the second-order derivatives of the quasi-log-likelihood function. This paper also shows the relationship between the asymptotic distributions of the 2sQML estimator for the RBEKK model and variance targeting quasi-maximum likelihood estimator for the VT-BEKK model. Monte Carlo experiments show that the bias of the 2sQML estimator is negligible and that the appropriateness of the diagonal specification depends on the closeness to either the diagonal BEKK or the diagonal RBEKK models. An empirical analysis of the returns of stocks listed on the Dow Jones Industrial Average indicates that the choice of the diagonal BEKK or diagonal RBEKK models changes over time, but most of the differences between the two forecasts are negligible.
Original language | English |
---|---|
Article number | 21 |
Journal | Econometrics |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2021 |
Bibliographical note
Funding Information:Japan Society for the Promotion of Science (19K01594). The authors are most grateful to the editor, four anonymous reviewers, and Yoshihisa Baba for very helpful comments and suggestions. The first author acknowledges the financial support of the Japan Ministry of Education, Culture, Sports, Science and Technology, Japan Society for the Promotion of Science, and the Australian Academy of Science. The second author thanks the Ministry of Science and Technology (MOST) for financial support. The third author is most grateful for the financial support of the Australian Research Council, Ministry of Science and Technology (MOST), Taiwan, and the Japan Society for the Promotion of Science.
Funding Information:
Acknowledgments: The authors are most grateful to the editor, four anonymous reviewers, and Yoshihisa Baba for very helpful comments and suggestions. The first author acknowledges the financial support of the Japan Ministry of Education, Culture, Sports, Science and Technology, Japan Society for the Promotion of Science, and the Australian Academy of Science. The second author thanks the Ministry of Science and Technology (MOST) for financial support. The third author is most grateful for the financial support of the Australian Research Council, Ministry of Science and Technology (MOST), Taiwan, and the Japan Society for the Promotion of Science.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.