Bidirectional learning in upbound and downbound microzones of the cerebellum

Research output: Contribution to journalArticleAcademicpeer-review

60 Citations (Scopus)


Over the past several decades, theories about cerebellar learning have evolved. A relatively simple view that highlighted the contribution of one major form of heterosynaptic plasticity to cerebellar motor learning has given way to a plethora of perspectives that suggest that many different forms of synaptic and non-synaptic plasticity, acting at various sites, can control multiple types of learning behaviour. However, there still seem to be contradictions between the various hypotheses with regard to the mechanisms underlying cerebellar learning. The challenge is therefore to reconcile these different views and unite them into a single overall concept. Here I review our current understanding of the changes in the activity of cerebellar Purkinje cells in different ‘microzones’ during various forms of learning. I describe an emerging model that indicates that the activity of each microzone is bound to either increase or decrease during the initial stages of learning, depending on the directional and temporal demands of its downstream circuitry and the behaviour involved.

Original languageEnglish
Pages (from-to)92-110
Number of pages19
JournalNature Reviews Neuroscience
Issue number2
Publication statusPublished - Feb 2021

Research programs

  • EMC OR-01


Dive into the research topics of 'Bidirectional learning in upbound and downbound microzones of the cerebellum'. Together they form a unique fingerprint.

Cite this