Ceilings and floors: where are there no observations?

G Goertz, A Hak, Jan Dul

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)


There are situations where the data or the theory suggest or require, respectively, that one estimate the boundary lines that separate regions of observations from regions of no observations. Of particular interest are ceiling or floor lines. For example, many theories use terms such as veto player, constraint, only if, and so on, which suggest ceilings. Ceiling hypotheses have a nonstandard form claiming the probability of Y will be zero for all values of Y greater than the ceiling value of Yc for a given value of X. Conversely, ceiling hypotheses make no specific prediction about the value of Y for a given value of X except that it will be less than the ceiling value. Floors work by guaranteeing minimum levels. The article gives numerous examples of theories that imply ceiling or floor hypotheses and numerous examples of data that fit such hypotheses. The article proposes quantile regression as a means of estimating the boundaries of the no-data zone as well as criteria for evaluating the importance of the boundary variable. These techniques are illustrated for ceiling and floor hypotheses relating gross domestic product/capita and democracy.
Original languageEnglish
Pages (from-to)3-40
Number of pages38
JournalSociological Methods & Research (SMR)
Issue number1
Publication statusPublished - 14 Dec 2012

Research programs



Dive into the research topics of 'Ceilings and floors: where are there no observations?'. Together they form a unique fingerprint.

Cite this