Characterization of histone modifications associated with inactive X-Chromosome in trophoblast stem cells, eXtra-Embryonic endoderm cells and in in vitro derived undifferentiated and differentiated epiblast like stem cells

Cathérine Dupont*, Cheryl Maduro, Hannah Braanker, Ruben Boers, Dorota Kurek, Joost Gribnau*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
17 Downloads (Pure)

Abstract

In mouse, X-chromosome inactivation (XCI) can either be imprinted or random. Imprinted XCI (iXCI) is considered unstable and depending on continuous Xist expression, whereas random XCI (rXCI) is stably maintained even in the absence of Xist. Here we have systematically examined epigenetic modifications associated with the inactive X-chromosome (Xi) in Trophoblast Stem cells, eXtra-Embryonic Endoderm Cells, undifferentiated and differentiated Epiblast Like Stem Cells in order to understand intrinsic differences in epigenetic mechanisms involved in silencing of the inactive X-chromosome in lineages presenting iXCI and rXCI. Whereas euchromatic histone modifications are predominantly lost from the Xi territory in all cell types, the accumulation of heterochromatic modifications diverges in between the analysed cell lineages. Particularly, only the Xi of multipotent Trophoblast (iXCI) and Epiblast stem cells (rXCI) display a visible accumulation of Polycomb Repressive Complexes (PRCs), in contrast to the Xi in differentiated Epiblast Like Stem Cells and eXtra-embryonic Endoderm cells. Despite this, the histone modifications catalysed by PRCs, ubH2AK119 and H3K27me3, remain the best heterochromatic markers for the Xi in all assessed lineages. Heterochromatic chromatin modifications associated with the Xi are a reflection of the epigenetic landscape of the entire genome of the assessed cell regardless whether XCI is imprinted or random.

Original languageEnglish
Article numbere0167154
JournalPLoS One (print)
Volume11
Issue number12
DOIs
Publication statusPublished - 15 Dec 2016

Bibliographical note

Publisher Copyright:
© 2016 Dupont et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Research programs

  • EMC MGC-02-82-01

Fingerprint

Dive into the research topics of 'Characterization of histone modifications associated with inactive X-Chromosome in trophoblast stem cells, eXtra-Embryonic endoderm cells and in in vitro derived undifferentiated and differentiated epiblast like stem cells'. Together they form a unique fingerprint.

Cite this