Clinical prediction model to identify vulnerable patients in ambulatory surgery: towards optimal medical decision-making

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
15 Downloads (Pure)


Ambulatory surgery patients are at risk of adverse psychological outcomes such as anxiety, aggression, fatigue, and depression. We developed and validated a clinical prediction model to identify patients who were vulnerable to these psychological outcome parameters. We prospectively assessed 383 mixed ambulatory surgery patients for psychological vulnerability, defined as the presence of anxiety (state/trait), aggression (state/trait), fatigue, and depression seven days after surgery. Three psychological vulnerability categories were considered-i.e., none, one, or multiple poor scores, defined as a score exceeding one standard deviation above the mean for each single outcome according to normative data. The following determinants were assessed preoperatively: sociodemographic (age, sex, level of education, employment status, marital status, having children, religion, nationality), medical (heart rate and body mass index), and psychological variables (self-esteem and self-efficacy), in addition to anxiety, aggression, fatigue, and depression. A prediction model was constructed using ordinal polytomous logistic regression analysis, and bootstrapping was applied for internal validation. The ordinal c-index (ORC) quantified the discriminative ability of the model, in addition to measures for overall model performance (Nagelkerke's R (2) ). In this population, 137 (36%) patients were identified as being psychologically vulnerable after surgery for at least one of the psychological outcomes. The most parsimonious and optimal prediction model combined sociodemographic variables (level of education, having children, and nationality) with psychological variables (trait anxiety, state/trait aggression, fatigue, and depression). Model performance was promising: R (2) = 30% and ORC = 0.76 after correction for optimism. This study identified a substantial group of vulnerable patients in ambulatory surgery. The proposed clinical prediction model could allow healthcare professionals the opportunity to identify vulnerable patients in ambulatory surgery, although additional modification and validation are needed. ( number, NCT01441843).
Original languageUndefined/Unknown
Pages (from-to)1022-1032
Number of pages11
JournalCanadian Journal of Anaesthesia-Journal Canadien d' Anesthésie
Issue number9
Publication statusPublished - 2016

Research programs

  • EMC COEUR-09
  • EMC NIHES-02-65-01

Cite this