CMAN: Cascaded Multi-scale Spatial Channel Attention-guided Network for large 3D deformable registration of liver CT images

Xuan Loc Pham, Manh Ha Luu*, Theo van Walsum, Hong Son Mai, Stefan Klein, Ngoc Ha Le, Duc Trinh Chu

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Deformable image registration is an essential component of medical image analysis and plays an irreplaceable role in clinical practice. In recent years, deep learning-based registration methods have demonstrated significant improvements in convenience, robustness and execution time compared to traditional algorithms. However, registering images with large displacements, such as those of the liver organ, remains underexplored and challenging. In this study, we present a novel convolutional neural network (CNN)-based unsupervised learning registration method, Cascaded Multi-scale Spatial-Channel Attention-guided Network (CMAN), which addresses the challenge of large deformation fields using a double coarse-to-fine registration approach. The main contributions of CMAN include: (i) local coarse-to-fine registration in the base network, which generates the displacement field for each resolution and progressively propagates these local deformations as auxiliary information for the final deformation field; (ii) global coarse-to-fine registration, which stacks multiple base networks for sequential warping, thereby incorporating richer multi-layer contextual details into the final deformation field; (iii) integration of the spatial-channel attention module in the decoder stage, which better highlights important features and improves the quality of feature maps. The proposed network was trained using two public datasets and evaluated on another public dataset as well as a private dataset across several experimental scenarios. We compared CMAN with four state-of-the-art CNN-based registration methods and two well-known traditional algorithms. The results show that the proposed double coarse-to-fine registration strategy outperforms other methods in most registration evaluation metrics. In conclusion, CMAN can effectively handle the large-deformation registration problem and show potential for application in clinical practice. The source code is made publicly available at https://github.com/LocPham263/CMAN.git.

Original languageEnglish
Article number103212
JournalMedical Image Analysis
Volume96
DOIs
Publication statusPublished - Aug 2024

Bibliographical note

Publisher Copyright: © 2024 Elsevier B.V.

Fingerprint

Dive into the research topics of 'CMAN: Cascaded Multi-scale Spatial Channel Attention-guided Network for large 3D deformable registration of liver CT images'. Together they form a unique fingerprint.

Cite this