TY - JOUR
T1 - Comparison of Magnetic Resonance Imaging-Based Risk Calculators to Predict Prostate Cancer Risk
AU - Patel, Hiten D.
AU - Remmers, Sebastiaan
AU - Ellis, Jeffrey L.
AU - Li, Eric V.
AU - Roobol, Monique J.
AU - Fang, Andrew M.
AU - Davik, Petter
AU - Rais-Bahrami, Soroush
AU - Murphy, Adam B.
AU - Ross, Ashley E.
AU - Gupta, Gopal N.
N1 - Publisher Copyright:
© 2024 American Medical Association. All rights reserved.
PY - 2024/3/7
Y1 - 2024/3/7
N2 - Importance: Magnetic resonance imaging (MRI)-based risk calculators can replace or augment traditional prostate cancer (PCa) risk prediction tools. However, few data are available comparing performance of different MRI-based risk calculators in external cohorts across different countries or screening paradigms. Objective: To externally validate and compare MRI-based PCa risk calculators (Prospective Loyola University Multiparametric MRI [PLUM], UCLA [University of California, Los Angeles]-Cornell, Van Leeuwen, and Rotterdam Prostate Cancer Risk Calculator-MRI [RPCRC-MRI]) in cohorts from Europe and North America. Design, Setting, and Participants: This multi-institutional, external validation diagnostic study of 3 unique cohorts was performed from January 1, 2015, to December 31, 2022. Two cohorts from Europe and North America used MRI before biopsy, while a third cohort used an advanced serum biomarker, the Prostate Health Index (PHI), before MRI or biopsy. Participants included adult men without a PCa diagnosis receiving MRI before prostate biopsy. Interventions: Prostate MRI followed by prostate biopsy. Main Outcomes and Measures: The primary outcome was diagnosis of clinically significant PCa (grade group ≥2). Receiver operating characteristics for area under the curve (AUC) estimates, calibration plots, and decision curve analysis were evaluated. Results: A total of 2181 patients across the 3 cohorts were included, with a median age of 65 (IQR, 58-70) years and a median prostate-specific antigen level of 5.92 (IQR, 4.32-8.94) ng/mL. All models had good diagnostic discrimination in the European cohort, with AUCs of 0.90 for the PLUM (95% CI, 0.86-0.93), UCLA-Cornell (95% CI, 0.86-0.93), Van Leeuwen (95% CI, 0.87-0.93), and RPCRC-MRI (95% CI, 0.86-0.93) models. All models had good discrimination in the North American cohort, with an AUC of 0.85 (95% CI, 0.80-0.89) for PLUM and AUCs of 0.83 for the UCLA-Cornell (95% CI, 0.80-0.88), Van Leeuwen (95% CI, 0.79-0.88), and RPCRC-MRI (95% CI, 0.78-0.87) models, with somewhat better calibration for the RPCRC-MRI and PLUM models. In the PHI cohort, all models were prone to underestimate clinically significant PCa risk, with best calibration and discrimination for the UCLA-Cornell (AUC, 0.83 [95% CI, 0.81-0.85]) model, followed by the PLUM model (AUC, 0.82 [95% CI, 0.80-0.84]). The Van Leeuwen model was poorly calibrated in all 3 cohorts. On decision curve analysis, all models provided similar net benefit in the European cohort, with higher benefit for the PLUM and RPCRC-MRI models at a threshold greater than 22% in the North American cohort. The UCLA-Cornell model demonstrated highest net benefit in the PHI cohort. Conclusions and Relevance: In this external validation study of patients receiving MRI and prostate biopsy, the results support the use of the PLUM or RPCRC-MRI models in MRI-based screening pathways regardless of European or North American setting. However, tools specific to screening pathways incorporating advanced biomarkers as reflex tests are needed due to underprediction.
AB - Importance: Magnetic resonance imaging (MRI)-based risk calculators can replace or augment traditional prostate cancer (PCa) risk prediction tools. However, few data are available comparing performance of different MRI-based risk calculators in external cohorts across different countries or screening paradigms. Objective: To externally validate and compare MRI-based PCa risk calculators (Prospective Loyola University Multiparametric MRI [PLUM], UCLA [University of California, Los Angeles]-Cornell, Van Leeuwen, and Rotterdam Prostate Cancer Risk Calculator-MRI [RPCRC-MRI]) in cohorts from Europe and North America. Design, Setting, and Participants: This multi-institutional, external validation diagnostic study of 3 unique cohorts was performed from January 1, 2015, to December 31, 2022. Two cohorts from Europe and North America used MRI before biopsy, while a third cohort used an advanced serum biomarker, the Prostate Health Index (PHI), before MRI or biopsy. Participants included adult men without a PCa diagnosis receiving MRI before prostate biopsy. Interventions: Prostate MRI followed by prostate biopsy. Main Outcomes and Measures: The primary outcome was diagnosis of clinically significant PCa (grade group ≥2). Receiver operating characteristics for area under the curve (AUC) estimates, calibration plots, and decision curve analysis were evaluated. Results: A total of 2181 patients across the 3 cohorts were included, with a median age of 65 (IQR, 58-70) years and a median prostate-specific antigen level of 5.92 (IQR, 4.32-8.94) ng/mL. All models had good diagnostic discrimination in the European cohort, with AUCs of 0.90 for the PLUM (95% CI, 0.86-0.93), UCLA-Cornell (95% CI, 0.86-0.93), Van Leeuwen (95% CI, 0.87-0.93), and RPCRC-MRI (95% CI, 0.86-0.93) models. All models had good discrimination in the North American cohort, with an AUC of 0.85 (95% CI, 0.80-0.89) for PLUM and AUCs of 0.83 for the UCLA-Cornell (95% CI, 0.80-0.88), Van Leeuwen (95% CI, 0.79-0.88), and RPCRC-MRI (95% CI, 0.78-0.87) models, with somewhat better calibration for the RPCRC-MRI and PLUM models. In the PHI cohort, all models were prone to underestimate clinically significant PCa risk, with best calibration and discrimination for the UCLA-Cornell (AUC, 0.83 [95% CI, 0.81-0.85]) model, followed by the PLUM model (AUC, 0.82 [95% CI, 0.80-0.84]). The Van Leeuwen model was poorly calibrated in all 3 cohorts. On decision curve analysis, all models provided similar net benefit in the European cohort, with higher benefit for the PLUM and RPCRC-MRI models at a threshold greater than 22% in the North American cohort. The UCLA-Cornell model demonstrated highest net benefit in the PHI cohort. Conclusions and Relevance: In this external validation study of patients receiving MRI and prostate biopsy, the results support the use of the PLUM or RPCRC-MRI models in MRI-based screening pathways regardless of European or North American setting. However, tools specific to screening pathways incorporating advanced biomarkers as reflex tests are needed due to underprediction.
UR - http://www.scopus.com/inward/record.url?scp=85187202221&partnerID=8YFLogxK
U2 - 10.1001/jamanetworkopen.2024.1516
DO - 10.1001/jamanetworkopen.2024.1516
M3 - Article
C2 - 38451522
AN - SCOPUS:85187202221
SN - 2574-3805
VL - 7
JO - JAMA network open
JF - JAMA network open
IS - 3
M1 - e241516
ER -