Comparison of three air samplers for the collection of four nebulized respiratory viruses - Collection of respiratory viruses from air –

Jasmin S. Kutter, Dennis de Meulder, Theo M. Bestebroer, Ard Mulders, Ron A.M. Fouchier, Sander Herfst*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)
47 Downloads (Pure)

Abstract

Viral respiratory tract infections are a leading cause of morbidity and mortality worldwide. Unfortunately, the transmission routes and shedding kinetics of respiratory viruses remain poorly understood. Air sampling techniques to quantify infectious viruses in the air are indispensable to improve intervention strategies to control and prevent spreading of respiratory viruses. Here, the collection of infectious virus with the six-stage Andersen cascade impactor was optimized with semi-solid gelatin as collection surface. Subsequently, the collection efficiency of the cascade impactor, the SKC BioSampler, and an in-house developed electrostatic precipitator was compared. In an in vitro set-up, influenza A virus, human metapneumovirus, parainfluenza virus type 3, and respiratory syncytial virus were nebulized and the amount of collected infectious virus and viral RNA was quantified with each air sampler. Whereas only low amounts of virus were collected using the electrostatic precipitator, high amounts were collected with the BioSampler and cascade impactor. The BioSampler allowed straight-forward sampling in liquid medium, whereas the more laborious cascade impactor allowed size fractionation of virus-containing particles. Depending on the research question, either the BioSampler or the cascade impactor can be applied in laboratory and field settings, such as hospitals to gain more insight into the transmission routes of respiratory viruses.

Original languageEnglish
Pages (from-to)1874-1885
Number of pages12
JournalIndoor Air
Volume31
Issue number6
Early online date14 Jun 2021
DOIs
Publication statusPublished - Nov 2021

Bibliographical note

Funding Information:
This work was financed through an NWO VIDI grant (contract number 91715372), NIH/NIAID contract HHSN272201400008C and European Union's Horizon 2020 research and innovation program VetBioNet (grant agreement No 731014).

Publisher Copyright:
© 2021 The Authors. Indoor Air published by John Wiley & Sons Ltd.

Fingerprint

Dive into the research topics of 'Comparison of three air samplers for the collection of four nebulized respiratory viruses - Collection of respiratory viruses from air –'. Together they form a unique fingerprint.

Cite this