TY - JOUR
T1 - Connectivity Map-based discovery of parbendazole reveals targetable human osteogenic pathway
AU - Brum, Andrea
AU - van de Peppel, Jeroen
AU - Leije, Cindy
AU - Schreuders-Koedam, M
AU - Eijken, Marco
AU - van der Eerden, Bram
AU - van Leeuwen, Hans
PY - 2015
Y1 - 2015
N2 - Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. In this study, we have identified pathways that stimulate differentiation of bone forming osteoblasts from human mesenchymal stromal cells (hMSCs). Gene expression profiling was performed in hMSCs differentiated toward osteoblasts (at 6 h). Significantly regulated genes were analyzed in silico, and the Connectivity Map (CMap) was used to identify candidate bone stimulatory compounds. The signature of parbendazole matches the expression changes observed for osteogenic hMSCs. Parbendazole stimulates osteoblast differentiation as indicated by increased alkaline phosphatase activity, mineralization, and up-regulation of bone marker genes (alkaline phosphatase/ALPL, osteopontin/SPP1, and bone sialoprotein II/IBSP) in a subset of the hMSC population resistant to the apoptotic effects of parbendazole. These osteogenic effects are independent of glucocorticoids because parbendazole does not up-regulate glucocorticoid receptor (GR) target genes and is not inhibited by the GR antagonist mifepristone. Parbendazole causes profound cytoskeletal changes including degradation of microtubules and increased focal adhesions. Stabilization of microtubules by pretreatment with Taxol inhibits osteoblast differentiation. Parbendazole up-regulates bone morphogenetic protein 2 (BMP-2) gene expression and activity. Cotreatment with the BMP-2 antagonist DMH1 limits, but does not block, parbendazole-induced mineralization. Using the CMap we have identified a previously unidentified lineage-specific, bone anabolic compound, parbendazole, which induces osteogenic differentiation through a combination of cytoskeletal changes and increased BMP-2 activity.
AB - Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. In this study, we have identified pathways that stimulate differentiation of bone forming osteoblasts from human mesenchymal stromal cells (hMSCs). Gene expression profiling was performed in hMSCs differentiated toward osteoblasts (at 6 h). Significantly regulated genes were analyzed in silico, and the Connectivity Map (CMap) was used to identify candidate bone stimulatory compounds. The signature of parbendazole matches the expression changes observed for osteogenic hMSCs. Parbendazole stimulates osteoblast differentiation as indicated by increased alkaline phosphatase activity, mineralization, and up-regulation of bone marker genes (alkaline phosphatase/ALPL, osteopontin/SPP1, and bone sialoprotein II/IBSP) in a subset of the hMSC population resistant to the apoptotic effects of parbendazole. These osteogenic effects are independent of glucocorticoids because parbendazole does not up-regulate glucocorticoid receptor (GR) target genes and is not inhibited by the GR antagonist mifepristone. Parbendazole causes profound cytoskeletal changes including degradation of microtubules and increased focal adhesions. Stabilization of microtubules by pretreatment with Taxol inhibits osteoblast differentiation. Parbendazole up-regulates bone morphogenetic protein 2 (BMP-2) gene expression and activity. Cotreatment with the BMP-2 antagonist DMH1 limits, but does not block, parbendazole-induced mineralization. Using the CMap we have identified a previously unidentified lineage-specific, bone anabolic compound, parbendazole, which induces osteogenic differentiation through a combination of cytoskeletal changes and increased BMP-2 activity.
U2 - 10.1073/pnas.1501597112
DO - 10.1073/pnas.1501597112
M3 - Article
C2 - 26420877
SN - 0027-8424
VL - 112
SP - 12711
EP - 12716
JO - Proceedings of the National Academy of Sciences of the U.S.A.
JF - Proceedings of the National Academy of Sciences of the U.S.A.
IS - 41
ER -