Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge

Alain Lalande*, Zhihao Chen, Thibaut Pommier, Thomas Decourselle, Abdul Qayyum, Michel Salomon, Dominique Ginhac, Youssef Skandarani, Arnaud Boucher, Khawla Brahim, Marleen de Bruijne, Robin Camarasa, Teresa M. Correia, Xue Feng, Kibrom B. Girum, Anja Hennemuth, Markus Huellebrand, Raabid Hussain, Matthias Ivantsits, Jun MaCraig Meyer, Rishabh Sharma, Jixi Shi, Nikolaos V. Tsekos, Marta Varela, Xiyue Wang, Sen Yang, Hannu Zhang, Yichi Zhang, Yuncheng Zhou, Xiahai Zhuang, Raphael Couturier, Fabrice Meriaudeau

*Corresponding author for this work

Research output: Contribution to journalShort surveyAcademicpeer-review

22 Citations (Scopus)
117 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge'. Together they form a unique fingerprint.

Computer Science

Immunology and Microbiology

Pharmacology, Toxicology and Pharmaceutical Science

Chemical Engineering