Abstract
Summary: We developed and compared deep learning models to detect hip osteoarthritis on clinical CT. The CT-based summation images, CT-AP, that resemble X-ray radiographs can detect radiographic hip osteoarthritis and in the absence of large training data, a reliable deep learning model can be optimized by combining CT-AP and X-ray images.
Introduction: In this study, we aimed to investigate the applicability of deep learning (DL) to assess radiographic hip osteoarthritis (rHOA) on computed tomography (CT).
Methods: The study data consisted of 94 abdominopelvic clinical CTs and 5659 hip X-ray images collected from Cohort Hip and Cohort Knee (CHECK). The CT slices were sequentially summed to create radiograph-like 2-D images named CT-AP. X-ray and CT-AP images were classified as rHOA if they had osteoarthritic changes corresponding to Kellgren-Lawrence grade 2 or higher. The study data was split into 55% training, 30% validation, and 15% test sets. A pretrained ResNet18 was optimized for a classification task of rHOA vs. no-rHOA. Five models were trained using (1) X-rays, (2) downsampled X-rays, (3) combination of CT-AP and X-ray images, (4) combination of CT-AP and downsampled X-ray images, and (5) CT-AP images.
Results: Amongst the five models, Model-3 and Model-5 performed best in detecting rHOA from the CT-AP images. Model-3 detected rHOA on the test set of CT-AP images with a balanced accuracy of 82.2% and was able to discriminate rHOA from no-rHOA with an area under the receiver operating characteristic curve (ROC AUC) of 0.93 [0.75–0.99]. Model-5 detected rHOA on the test set at a balanced accuracy of 82.2% and classified rHOA from no-rHOA with an ROC AUC of 0.89 [0.67–0.97].
Conclusion: CT-based summation images that resemble radiographs can be used to detect rHOA. In addition, in the absence of large training data, a reliable DL model can be optimized by combining CT-AP and X-ray images.
Original language | English |
---|---|
Pages (from-to) | 355-365 |
Number of pages | 11 |
Journal | Osteoporosis International |
Volume | 33 |
Issue number | 2 |
Early online date | 2 Sept 2021 |
DOIs | |
Publication status | Published - Feb 2022 |
Bibliographical note
Funding Information:The CHECK-cohort study is funded by the Dutch Arthritis Foundation. Involved are Erasmus Medical Center Rotterdam; Kennemer Gasthuis Haarlem; Leiden University Medical Center; Maastricht University Medical Center; Martini Hospital Groningen/Allied Health Care Center for Rheumatology and Rehabilitation Groningen; Medical Spectrum Twente Enschede /Ziekenhuisgroep Twente Almelo; Reade Center for Rehabilitation and Rheumatology; St. Maartens-kliniek Nijmegen; University Medical Center Utrecht and Wilhelmina Hospital Assen.
Funding Information:
Open access funding provided by University of Oulu including Oulu University Hospital. This study was financially supported by CINOP Global (NICHE/ETH/246) funded by EP-Nuffic.
Publisher Copyright:
© 2021, The Author(s).