Detection of Nonhemagglutinating Influenza A(H3) Viruses by Enzyme-Linked Immunosorbent Assay in Quantitative Influenza Virus Culture

Carel Baalen, C Els, Leo Sprong, Ruud Beek, Erhard Vries, Ab Osterhaus, Guus Rimmelzwaan

Research output: Contribution to journalArticleAcademicpeer-review

30 Citations (Scopus)


To assess the efficacy of novel antiviral drugs against influenza virus in clinical trials, it is necessary to quantify infectious virus titers in respiratory tract samples from patients. Typically, this is achieved by inoculating virus-susceptible cells with serial dilutions of clinical specimens and detecting the production of progeny virus by hemagglutination, since influenza viruses generally have the capacity to bind and agglutinate erythrocytes of various species through their hemagglutinin (HA). This readout method is no longer adequate, since an increasing number of currently circulating influenza A virus H3 subtype (A[ H3]) viruses display a reduced capacity to agglutinate erythrocytes. Here, we report the magnitude of this problem by analyzing the frequency of HA-deficient A(H3) viruses detected in The Netherlands from 1999 to 2012. Furthermore, we report the development and validation of an alternative method for monitoring the production of progeny influenza virus in quantitative virus cultures, which is independent of the capacity to agglutinate erythrocytes. This method is based on the detection of viral nucleoprotein (NP) in virus culture plates by enzyme-linked immunosorbent assay (ELISA), and it produced results similar to those of the hemagglutination assay using strains with good HA activity, including A/Brisbane/059/07 (H1N1), A/Victoria/210/09 (H3N2), other seasonal A(H1N1), A(H1N1) pdm09, and the majority of A(H3) virus strains isolated in 2009. In contrast, many A(H3) viruses that have circulated since 2010 failed to display HA activity, and infectious virus titers were determined only by detecting NP. The virus culture ELISA described here will enable efficacy testing of new antiviral compounds in clinical trials during seasons in which nonhemagglutinating influenza A viruses circulate.
Original languageUndefined/Unknown
Pages (from-to)1672-1677
Number of pages6
JournalJournal of Clinical Microbiology
Issue number5
Publication statusPublished - 2014

Research programs

  • EMC MM-04-27-01

Cite this