Development and evaluations of the ancestry informative markers of the VISAGE Enhanced Tool for Appearance and Ancestry

J. Ruiz-Ramírez, M. de la Puente*, C. Xavier, A. Ambroa-Conde, J. Álvarez-Dios, A. Freire-Aradas, A. Mosquera-Miguel, A. Ralf, C. Amory, M. A. Katsara, T. Khellaf, M. Nothnagel, E. Y.Y. Cheung, T. E. Gross, P. M. Schneider, J. Uacyisrael, S. Oliveira, M. D.N. Klautau-Guimarães, C. Carvalho-Gontijo, E. PośpiechW. Branicki, W. Parson, M. Kayser, A. Carracedo, M. V. Lareu, C. Phillips*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
38 Downloads (Pure)

Abstract

The VISAGE Enhanced Tool for Appearance and Ancestry (ET) has been designed to combine markers for the prediction of bio-geographical ancestry plus a range of externally visible characteristics into a single massively parallel sequencing (MPS) assay. We describe the development of the ancestry panel markers used in ET, and the enhanced analyses they provide compared to previous MPS-based forensic ancestry assays. As well as established autosomal single nucleotide polymorphisms (SNPs) that differentiate sub-Saharan African, European, East Asian, South Asian, Native American, and Oceanian populations, ET includes autosomal SNPs able to efficiently differentiate populations from Middle East regions. The ability of the ET autosomal ancestry SNPs to distinguish Middle East populations from other continentally defined population groups is such that characteristic patterns for this region can be discerned in genetic cluster analysis using STRUCTURE. Joint cluster membership estimates showing individual co-ancestry that signals North African or East African origins were detected, or cluster patterns were seen that indicate origins from central and Eastern regions of the Middle East. In addition to an augmented panel of autosomal SNPs, ET includes panels of 85 Y-SNPs, 16 X-SNPs and 21 autosomal Microhaplotypes. The Y- and X-SNPs provide a distinct method for obtaining extra detail about co-ancestry patterns identified in males with admixed backgrounds. This study used the 1000 Genomes admixed African and admixed American sample sets to fully explore these enhancements to the analysis of individual co-ancestry. Samples from urban and rural Brazil with contrasting distributions of African, European, and Native American co-ancestry were also studied to gauge the efficiency of combining Y- and X-SNP data for this purpose. The small panel of Microhaplotypes incorporated in ET were selected because they showed the highest levels of haplotype diversity amongst the seven population groups we sought to differentiate. Microhaplotype data was not formally combined with single-site SNP genotypes to analyse ancestry. However, the haplotype sequence reads obtained with ET from these loci creates an effective system for de-convoluting two-contributor mixed DNA. We made simple mixture experiments to demonstrate that when the contributors have different ancestries and the mixture ratios are imbalanced (i.e., not 1:1 mixtures) the ET Microhaplotype panel is an informative system to infer ancestry when this differs between the contributors.

Original languageEnglish
Article number102853
JournalForensic Science International: Genetics
Volume64
DOIs
Publication statusPublished - May 2023

Bibliographical note

Funding Information:
The study was supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 740580 within the framework of the VISible Attributes through GEnomics (VISAGE) Project and Consortium. M.d.l.P. is supported by a post-doctorate grant funded by the Consellería de Cultura, Educación e Ordenación Universitaria e da Consellería de Economía, Emprego e Industria from Xunta de Galicia, Spain (ED481D-2021–008). J.R. is supported by the “Programa de axudas á etapa predoutoral” funded by the Consellería de Cultura, Educación e Ordenación Universitaria e da Consellería de Economía , Emprego e Industria from Xunta de Galicia, Spain ( ED481A-2020/039 ). C.P., A.F.A., A.M.M., M.d.l.P., M.V.L. and the work to compile ancestry informative tri-allelic SNPs and microhaplotypes are supported by MAPA , ‘Multiple Allele Polymorphism Analysis’ ( BIO2016–78525-R ), a research project funded by the Spanish Research State Agency (AEI) and co-financed with ERDF funds. The population studies by S.O. at University of Santiago de Compostela, were financed by the Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF), Brazil.

Funding Information:
The study was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 740580 within the framework of the VISible Attributes through GEnomics (VISAGE) Project and Consortium. M.d.l.P. is supported by a post-doctorate grant funded by the Consellería de Cultura, Educación e Ordenación Universitaria e da Consellería de Economía, Emprego e Industria from Xunta de Galicia, Spain (ED481D-2021–008). J.R. is supported by the “Programa de axudas á etapa predoutoral” funded by the Consellería de Cultura, Educación e Ordenación Universitaria e da Consellería de Economía, Emprego e Industria from Xunta de Galicia, Spain (ED481A-2020/039). C.P. A.F.A. A.M.M. M.d.l.P. M.V.L. and the work to compile ancestry informative tri-allelic SNPs and microhaplotypes are supported by MAPA, ‘Multiple Allele Polymorphism Analysis’ (BIO2016–78525-R), a research project funded by the Spanish Research State Agency (AEI) and co-financed with ERDF funds. The population studies by S.O. at University of Santiago de Compostela, were financed by the Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF), Brazil. The authors gratefully acknowledge the sharing of genetic cluster analysis information from the 1000 Genomes Phase III SNP data, kindly provided by Adam Auton, Department of Genetics, Albert Einstein College of Medicine, Bronx, NYC, USA. The authors thank Luciana Maia Escher dos Santos and Sabrina Guimarães Paiva for their dedicated work in the collection of samples from rural and urban Brazil used in this study. All STRUCTURE analyses were performed by the FinisTerrae II supercomputer at the Centro de Supercomputación de Galicia, Santiago de Compostela (CESGA), Spain.

Publisher Copyright:
© 2023 The Authors

Fingerprint

Dive into the research topics of 'Development and evaluations of the ancestry informative markers of the VISAGE Enhanced Tool for Appearance and Ancestry'. Together they form a unique fingerprint.

Cite this