Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes

Madeleine Carreau, Eric Eveno, Xavier Quilliet, Odile Chevalier-lagente, Annie Benoit, Bianca Tanganelli, Miria Stefanini, Wim Vermeulen, Jan H.J. Hoeijmakers, Alian Sarasin, Mauro Mezzina*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

44 Citations (Scopus)


Nucleotide excision repair (NER)-deficient human cells have been assigned so far to a genetic complementation group by a somatic cell fusion assay and, more recently, by microinjection of cloned DNA repair genes. We describe a new technique, based on the host cell reactivation assay for the rapid determination of the complementation group of NER-deficient xeroderma pigmentosum (XP), Cockayne's syndrome (CS) and photosensitive trichothiodystrophy (TTD) human cells by contransfection of a UVirradiated reporter plasmid with a second vector containing a cloned repair gene. Expression of the reporter gene, either chloramphenicol acetyltransferase (CAT) or luciferase, reflects the DNA repair ability restored by the introduction of the appropriate repair gene. All genetically characterized XP, CS and TTD/XP-D cells tested failed to express the UV-irradiated reporter gene, this reflecting their NER defeciency whereas contransfection with the repair plasmid expressing a gene specific for the given complementation group increased the enzyme activity to the level reached by normal cells. Selective recovery of both reporter enzyme activities was observed after contransfection with the XPC gene for the XP17VI cells and with the XPA gene for both XP18VI and XP19VI cells. Using this method, we assigned three new NER-deficient human cells obtained from patients presenting clinical symptoms described as classical XP group A (XP18VI and XP19VI)and XP group C (XP17VI). Therefore, this technique increases the range of methods now available to determine the complementation group of new NER deficient patients with the advantage, unlike the somatic cell fusion assay or the microinjection procedure, of being simple, rapid, and inexpensive.

Original languageEnglish
Pages (from-to)1003-1009
Number of pages7
Issue number5
Publication statusPublished - May 1995


Dive into the research topics of 'Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes'. Together they form a unique fingerprint.

Cite this