TY - JOUR
T1 - Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography
AU - Luijten, Sven P.R.
AU - Wolff, Lennard
AU - MR CLEAN Registry and PRESTO investigators
AU - Duvekot, Martijne H.C.
AU - van Doormaal, Pieter Jan
AU - Moudrous, Walid
AU - Kerkhoff, Henk
AU - Lycklama A Nijeholt, Geert J.
AU - Bokkers, Reinoud P.H.
AU - Yo, Lonneke S.F.
AU - Hofmeijer, Jeannette
AU - van Zwam, Wim H.
AU - van Es, Adriaan C.G.M.
AU - Dippel, Diederik W.J.
AU - Roozenbeek, Bob
AU - van der Lugt, Aad
N1 - Publisher Copyright:
© Author(s) (or their employer(s)) 2022.
PY - 2022/8/1
Y1 - 2022/8/1
N2 - BACKGROUND: Machine learning algorithms hold the potential to contribute to fast and accurate detection of large vessel occlusion (LVO) in patients with suspected acute ischemic stroke. We assessed the diagnostic performance of an automated LVO detection algorithm on CT angiography (CTA). METHODS: Data from the MR CLEAN Registry and PRESTO were used including patients with and without LVO. CTA data were analyzed by the algorithm for detection and localization of LVO (intracranial internal carotid artery (ICA)/ICA terminus (ICA-T), M1, or M2). Assessments done by expert neuroradiologists were used as reference. Diagnostic performance was assessed for detection of LVO and per occlusion location by means of sensitivity, specificity, and area under the curve (AUC). RESULTS: We analyzed CTAs of 1110 patients from the MR CLEAN Registry (median age (IQR) 71 years (60-80); 584 men; 1110 with LVO) and of 646 patients from PRESTO (median age (IQR) 73 years (62-82); 358 men; 141 with and 505 without LVO). For detection of LVO, the algorithm yielded a sensitivity of 89% in the MR CLEAN Registry and a sensitivity of 72%, specificity of 78%, and AUC of 0.75 in PRESTO. Sensitivity per occlusion location was 88% for ICA/ICA-T, 94% for M1, and 72% for M2 occlusion in the MR CLEAN Registry, and 80% for ICA/ICA-T, 95% for M1, and 49% for M2 occlusion in PRESTO. CONCLUSION: The algorithm provided a high detection rate for proximal LVO, but performance varied significantly by occlusion location. Detection of M2 occlusion needs further improvement.
AB - BACKGROUND: Machine learning algorithms hold the potential to contribute to fast and accurate detection of large vessel occlusion (LVO) in patients with suspected acute ischemic stroke. We assessed the diagnostic performance of an automated LVO detection algorithm on CT angiography (CTA). METHODS: Data from the MR CLEAN Registry and PRESTO were used including patients with and without LVO. CTA data were analyzed by the algorithm for detection and localization of LVO (intracranial internal carotid artery (ICA)/ICA terminus (ICA-T), M1, or M2). Assessments done by expert neuroradiologists were used as reference. Diagnostic performance was assessed for detection of LVO and per occlusion location by means of sensitivity, specificity, and area under the curve (AUC). RESULTS: We analyzed CTAs of 1110 patients from the MR CLEAN Registry (median age (IQR) 71 years (60-80); 584 men; 1110 with LVO) and of 646 patients from PRESTO (median age (IQR) 73 years (62-82); 358 men; 141 with and 505 without LVO). For detection of LVO, the algorithm yielded a sensitivity of 89% in the MR CLEAN Registry and a sensitivity of 72%, specificity of 78%, and AUC of 0.75 in PRESTO. Sensitivity per occlusion location was 88% for ICA/ICA-T, 94% for M1, and 72% for M2 occlusion in the MR CLEAN Registry, and 80% for ICA/ICA-T, 95% for M1, and 49% for M2 occlusion in PRESTO. CONCLUSION: The algorithm provided a high detection rate for proximal LVO, but performance varied significantly by occlusion location. Detection of M2 occlusion needs further improvement.
UR - http://www.scopus.com/inward/record.url?scp=85134435308&partnerID=8YFLogxK
U2 - 10.1136/neurintsurg-2021-017842
DO - 10.1136/neurintsurg-2021-017842
M3 - Article
C2 - 34413245
AN - SCOPUS:85134435308
SN - 1759-8478
VL - 14
SP - 794
EP - 798
JO - Journal of NeuroInterventional Surgery
JF - Journal of NeuroInterventional Surgery
IS - 8
ER -