Abstract
A broad spectrum of health benefits from intermittent fasting have been reported in studies on animal models and human subjects. However, the underlying mechanisms of these beneficial effects remain largely elusive. The present study aimed to explore the effects and potential mode of action of intermittent fasting in mouse models with a focus on the liver. C57BL/6 mice were subjected to intermittent fasting or ad libitum feeding as controls. It was determined that 12 h of daily intermittent fasting for 30 days significantly reduced the cumulative food intake compared with that in mice with ad libitum feeding. Fasting resulted in a significantly reduced liver mass but only had a minimal effect on bodyweight. The effects on the liver by 30 days of fasting were not reversed by subsequent ad libitum refeeding for 30 days. Among the measured blood biochemical parameters, the levels of blood glucose were decreased, while the levels of alkaline phosphatase were increased in fasting mice. Of note, targeted metabolic profiling revealed global elevation of metabolites in the livers of fasting mice. These metabolic molecules included adenosine triphosphate, nicotinamide adenine dinucleotide phosphate (NADP), reduced NADP and succinate, which are essentially involved in the citric acid cycle and oxidative phosphorylation. Thus, it was concluded that daily 12 h of intermittent fasting for one month significantly reduced the liver weight of mice, which is associated with enhanced liver metabolism.
Original language | English |
---|---|
Article number | 950 |
Journal | Experimental and Therapeutic Medicine |
Volume | 22 |
Issue number | 3 |
Early online date | 5 Jul 2021 |
DOIs | |
Publication status | Published - Sept 2021 |
Externally published | Yes |
Bibliographical note
Funding:The present study was supported by the National Natural Science Foundation of China (grant no. 81972281);
the Program for Changjiang Scholars and Innovative Research Teams in University of the Ministry of Education, China (grant
no. IRT_17R88) Medical Scientific Research, the foundation of Guangdong Province (grant no. A2015297).
Copyright: © Ma et al.