Abstract
Background Observational healthcare data offer the potential to identify adverse drug reactions that may be missed by spontaneous reporting. The self-controlled cohort analysis within the Temporal Pattern Discovery framework compares the observed-to-expected ratio of medical outcomes during post-exposure surveillance periods with those during a set of distinct pre-exposure control periods in the same patients. It utilizes an external control group to account for systematic differences between the different time periods, thus combining within- and between-patient confounder adjustment in a single measure. Objectives To evaluate the performance of the calibrated self-controlled cohort analysis within Temporal Pattern Discovery as a tool for risk identification in observational healthcare data. Research Design Different implementations of the calibrated self-controlled cohort analysis were applied to 399 drug-outcome pairs (165 positive and 234 negative test cases across 4 health outcomes of interest) in 5 real observational databases (four with administrative claims and one with electronic health records). Measures Performance was evaluated on real data through sensitivity/specificity, the area under receiver operator characteristics curve (AUC), and bias. Results The calibrated self-controlled cohort analysis achieved good predictive accuracy across the outcomes and databases under study. The optimal design based on this reference set uses a 360 days surveillance period and a single control period 180 days prior to new prescriptions. It achieved an average AUC of 0.75 and AUC >0.70 in all but one Conclusions The calibrated self-controlled cohort analysis within Temporal Pattern Discovery shows promise as a tool for risk identification; it performs well at discriminating positive from negative test cases. The optimal parameter configuration may vary with the data set and medical outcome of interest.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | S107-S121 |
Journal | Drug Safety |
Volume | 36 |
DOIs | |
Publication status | Published - 2013 |
Research programs
- EMC NIHES-03-77-02