Forecasting for remanufacturing: The effects of serialization

Thanos E. Goltsos, Aris A. Syntetos*, Erwin van der Laan

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)

Abstract

Remanufacturing operations rely upon accurate forecasts of demand and returned items. Return timing and quantity forecasts help estimate net demand (demand minus returns) requirements. Based on a unique data set of serialized transactional issues and returns from the Excelitas Group and one of their defense contractors, Qioptiq, we assess the empirical performance of some key methods in the area of returns forecasting. We extend their application (for net demand forecasting), by considering that demand is also subject to uncertainty and thus needs to be forecast. Information on remanufacturing costs allows for an evaluation of the inventory implications of such forecasts under various settings. A foray into the literature on information technologies enables a discussion on the interface between information availability and forecast accuracy and utility. We find that serialization accounts for considerable forecast accuracy benefits, and that the accuracy of demand forecasts is as important as that of returns. Further, we show how the combined returns and demand forecast uncertainty affects the inventory performance. Finally, we identify opportunities for further improvements for the operations of Qioptiq, and for remanufacturing operations in general.

Original languageEnglish
Pages (from-to)447-467
Number of pages21
JournalJournal of Operations Management
Volume65
Issue number5
DOIs
Publication statusPublished - 3 Jun 2019

Fingerprint

Dive into the research topics of 'Forecasting for remanufacturing: The effects of serialization'. Together they form a unique fingerprint.

Cite this