From mouse to man: Predictions of human pharmacokinetics of orally administered docetaxel from preclinical studies

S. L.W. Koolen*, R. A.B. Van Waterschoot, O. Van Tellingen, A. H. Schinkel, J. H. Beijnen, J. H.M. Schellens, A. D.R. Huitema

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)

Abstract

Intravenously administered docetaxel is approved for the treatment of various types of cancer. An oral regimen, in combination with ritonavir, is being evaluated in clinical trials. The pharmacokinetics of docetaxel are determined by the activity of the metabolizing enzyme cytochrome P450 3A (CYP3A) and the drug efflux transporter P-glycoprotein (P-gp). The effects of these proteins on the pharmacokinetics of docetaxel were investigated in different mouse models that lack 1 or both detoxifying systems. Docetaxel was given to these mice orally or intravenously with or without a strong CYP3A inhibitor, ritonavir. The data of these 2 preclinical studies were pooled and analyzed using nonlinear mixed-effects modeling. The results of the preclinical studies could be integrated successfully, with only a small difference in residual error (33% and 26%, respectively). Subsequently, the model was used to predict human exposure using allometric scaling and this was compared with clinical trial data. This model led to adequate predictions of docetaxel exposure in humans.

Original languageEnglish
Pages (from-to)370-380
Number of pages11
JournalJournal of Clinical Pharmacology
Volume52
Issue number3
DOIs
Publication statusPublished - Mar 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'From mouse to man: Predictions of human pharmacokinetics of orally administered docetaxel from preclinical studies'. Together they form a unique fingerprint.

Cite this