High salt intake activates the hypothalamic-pituitary-adrenal axis, amplifies the stress response, and alters tissue glucocorticoid exposure in mice

Hannah M. Costello, Georgios Krilis, Celine Grenier, David Severs, Alicja Czopek, Jessica R. Ivy, Mark Nixon, Megan C. Holmes, Dawn E.W. Livingstone, Ewout J. Hoorn, Neeraj Dhaun, Matthew A. Bailey*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)
139 Downloads (Pure)

Abstract

Aims: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. Methods and results: In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11β-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. Conclusion: Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.

Original languageEnglish
Pages (from-to)1740-1750
Number of pages11
JournalCardiovascular Research
Volume119
Issue number8
DOIs
Publication statusPublished - 1 Jun 2023

Bibliographical note

Funding Information:
Research funding for this study came from The British Heart Foundation (FS/16/54/32730; PG/16/98/32568; RE/18/5/34216); Kidney Research UK (IN001/2017; INT001/2018) and a Chief Scientist Office Senior Clinical Research Fellowship (SCAF/19/02).

Publisher Copyright:
© 2022 The Author(s). Published by Oxford University Press on behalf of the European Society of Cardiology.

Fingerprint

Dive into the research topics of 'High salt intake activates the hypothalamic-pituitary-adrenal axis, amplifies the stress response, and alters tissue glucocorticoid exposure in mice'. Together they form a unique fingerprint.

Cite this