Higher testosterone is associated with open-angle glaucoma in women: a genetic predisposition?

Joëlle E Vergroesen, Adem Kaynak, Elif Aribas, Maryam Kavousi, Joyce B J van Meurs, Caroline C W Klaver, Wishal D Ramdas*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

13 Downloads (Pure)


BACKGROUND: Testosterone may be a possible modifiable risk factor for open-angle glaucoma (OAG) and intraocular pressure (IOP), but evidence has been scarce and conflicting. In this study we evaluated the association of testosterone and its genetic predisposition with incident (i) OAG, IOP, retinal nerve fiber layer (RNFL), and ganglion cell-inner plexiform layer (GCL +).

METHODS: Participants aged 45-100 years were derived from the prospective, population-based Rotterdam Study. Ophthalmic examinations and serum testosterone measurements (including bioavailable and free testosterone) were performed from 1991 onwards. Follow-up took place every 4-5 years. A total of 187 out of 7898 participants were diagnosed with incident (i) OAG during follow-up. Genotyping was performed in 165 glaucoma cases and 6708 controls. We calculated sex-specific weighted genetic risk scores (GRS) for total and bioavailable testosterone. Associations with iOAG were analyzed using multivariable logistic regression. Associations with IOP, RNFL, and GCL + were analyzed with multivariable linear regression. Analyses were stratified on sex and adjusted for at least age, body mass index, and follow-up duration.

RESULTS: In men, testosterone was not associated with iOAG. However, the GRS for higher total testosterone was associated with an increased iOAG risk (odds ratio [OR] with 95% confidence interval [95% CI]: 2.48 [1.18; 5.22], per unit). In women, higher values of bioavailable testosterone (2.05 [1.00; 4.18] per nmol/L) and free testosterone (1.79 [1.00; 3.20] per ng/dL) were significantly associated with increased risk of iOAG. Moreover, the GRS for higher bioavailable testosterone was associated with an increased iOAG risk (2.48 [1.09; 5.65], per unit). Higher bioavailable and free testosterone were adversely associated with IOP (0.58 [0.05; 1.10] per nmol/L and 0.47 [0.04; 0.90] per ng/dL). Higher total testosterone was inversely associated with peripapillary RNFL and GCL + (Beta [95% CI]: - 3.54 [- 7.02; - 0.06] per nmol/L and - 2.18 [- 4.11; - 0.25] per nmol/L, respectively).

CONCLUSIONS: In women, higher testosterone levels increased the risk of iOAG. Both IOP-dependent and IOP-independent mechanisms may underlie this association. Managing testosterone levels may be particularly relevant for the prevention of neurodegeneration in the eye. Future research should confirm these findings.

Original languageEnglish
Article number27
JournalBiology of Sex Differences
Issue number1
Publication statusPublished - Dec 2023

Bibliographical note

Funding Information:
This study was supported by the following foundations that contributed through Uitzicht: Stichting Glaucoomfonds, Landelijke Stichting voor Blinden en Slechtzienden (LSBS), Oogfonds. Additional support was given by Rotterdamse Stichting Blindenbelangen (RSB), Stichting Lijf en Leven, Henkes stichting, Stichting voor Ooglijders, Stichting Blindenhulp, Erasmus Medical Center, Erasmus University, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The sponsor or funding organization had no role in the design or conduct of this research.

Funding Information:
The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists.

Publisher Copyright:
© 2023, The Author(s).


Dive into the research topics of 'Higher testosterone is associated with open-angle glaucoma in women: a genetic predisposition?'. Together they form a unique fingerprint.

Cite this