TY - JOUR
T1 - History-Dependent Catastrophes Regulate Axonal Microtubule Behavior
AU - Stepanova, T (Tatiana)
AU - Smal, Ihor
AU - van Haren, J
AU - Akinci Çorbacioğlu, Umut
AU - Liu, Zhe
AU - Miedema, M (Marja)
AU - Limpens, RWA (Ronald)
AU - van Ham, MA
AU - Reijden, Michael
AU - Poot, Raymond
AU - Grosveld, Frank
AU - Mommaas, M
AU - Meijering, Erik
AU - Galjart, Niels
PY - 2010
Y1 - 2010
N2 - In Chinese hamster ovary cells, microtubules originate at the microtubule organizing center (MTOC) and grow persistently toward the cell edge, where they undergo catastrophe [1]. In axons, microtubule dynamics must be regulated differently because microtubules grow parallel to the plasma membrane and there is no MTOC. GFP-tagged microtubule plus end tracking proteins (+TIPs) mark the ends of growing neuronal microtubules [2]. Their fluorescent "comet-like" pattern reflects turnover of +TIP binding sites [3, 4]. Using GFP-tagged +TIPs and fluorescence-based segmentation and tracking tools, we show that axonal microtubules grow with a constant average velocity and that they undergo catastrophes at random positions, yet in a programmed fashion. Using protein depletion approaches, we find that the +TIPs CLIP-115 and CLIP-170 affect average microtubule growth rate and growth distance in neurons but not the duration of a microtubule growth event. In N1E-115 neuroblastoma cells, we find that EB1, the core +TIP [5], regulates microtubule growth rate, growth distance, and duration, consistent with in vitro data [6]. Combined, our data suggest that CLIPs influence the axonal microtubule/tubulin ratio, whereas EB1 stimulates microtubule growth and structural transitions at microtubule ends, thereby regulating microtubule catastrophes and the turnover of +TIP binding sites.
AB - In Chinese hamster ovary cells, microtubules originate at the microtubule organizing center (MTOC) and grow persistently toward the cell edge, where they undergo catastrophe [1]. In axons, microtubule dynamics must be regulated differently because microtubules grow parallel to the plasma membrane and there is no MTOC. GFP-tagged microtubule plus end tracking proteins (+TIPs) mark the ends of growing neuronal microtubules [2]. Their fluorescent "comet-like" pattern reflects turnover of +TIP binding sites [3, 4]. Using GFP-tagged +TIPs and fluorescence-based segmentation and tracking tools, we show that axonal microtubules grow with a constant average velocity and that they undergo catastrophes at random positions, yet in a programmed fashion. Using protein depletion approaches, we find that the +TIPs CLIP-115 and CLIP-170 affect average microtubule growth rate and growth distance in neurons but not the duration of a microtubule growth event. In N1E-115 neuroblastoma cells, we find that EB1, the core +TIP [5], regulates microtubule growth rate, growth distance, and duration, consistent with in vitro data [6]. Combined, our data suggest that CLIPs influence the axonal microtubule/tubulin ratio, whereas EB1 stimulates microtubule growth and structural transitions at microtubule ends, thereby regulating microtubule catastrophes and the turnover of +TIP binding sites.
U2 - 10.1016/j.cub.2010.04.024
DO - 10.1016/j.cub.2010.04.024
M3 - Article
VL - 20
SP - 1023
EP - 1028
JO - Current Biology
JF - Current Biology
SN - 0960-9822
IS - 11
ER -