Human mesenchymal stem cells are susceptible to lysis by CD8+ T cells and NK cells

Research output: Contribution to journalArticleAcademicpeer-review

92 Citations (Scopus)


There is growing interest in the use of mesenchymal stem cells (MSCs) to improve the outcome of organ transplantation. The immunogenicity of MSCs is, however, unclear and is important for the efficacy of MSC therapy and for potential sensitization against donor antigens. We investigated the susceptibility of autolo- gous and allogeneic MSCs for lysis by CD8+ T-lymphocytes and NK cells in a kidney transplant setting. MSCs were derived from adipose tissue of human kidney donors and were CD90+, CD105+, CD166+, and HLA class I+. They showed differentiation ability and immunosuppressive capacity. Lysis of MSCs by peripheral blood mononuclear cells (PBMCs), FACS-sorted CD8+ T cells, and NK cells was measured by europium release assay. Allogeneic MSCs were susceptible for lysis by cytotoxic CD8+ T cells and NK cells, while autologous MSCs were lysed by NK cells only. NK cell-mediated lysis was inversely correlated with the expression of HLA class I on MSCs. Lysis of autologous MSCs was not dependent on culturing of MSCs in FBS, and MSCs in suspension as well as adherent to plastic were lysed by NK cells. Pretransplant recipient PBMCs did not lyse donor MSCs, but PBMCs isolated 3, 6, and 12 months after transplantation showed increasing lysing ability. After 12 months, CD8+ T-cell-mediated lysis of donor MSCs persisted, indicating there was no evidence for desensitization against donor MSCs. Lysis of MSCs is important to take into account when MSCs are considered for clinical application. Our results suggest that the HLA background of MSCs and timing of MSC administration are important for the efficacy of MSC therapy.

Original languageEnglish
Pages (from-to)1547-1559
Number of pages13
JournalCell Transplantation
Issue number10
Publication statusPublished - 2011


Dive into the research topics of 'Human mesenchymal stem cells are susceptible to lysis by CD8+ T cells and NK cells'. Together they form a unique fingerprint.

Cite this