Abstract
Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies.
Original language | English |
---|---|
Pages (from-to) | e0074323 |
Number of pages | 13 |
Journal | mSphere |
Volume | 9 |
Issue number | 2 |
Early online date | 24 Jan 2024 |
DOIs | |
Publication status | Published - 28 Feb 2024 |
Bibliographical note
Publisher Copyright:© 2024 Ribó-Molina et al.