TY - JOUR
T1 - Importance of His192 in the Human Thyroid Hormone Transporter MCT8 for Substrate Recognition
AU - Groeneweg, Stefan
AU - Lima de Souza, Elaine
AU - Visser, Edward
AU - Peeters, Robin
AU - Visser, Theo
PY - 2013
Y1 - 2013
N2 - Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). So far, functional domains within MCT8 are not well defined. Mutations in MCT8 result in severe psychomotor retardation due to impaired neuronal differentiation. One such mutation concerns His192 (H192R), located at the border of transmembrane domain (TMD) 1 and extracellular loop (ECL) 1, suggesting that this His residue is important for efficient TH transport. Here, we studied the role of different His residues, predicted within TMDs or ECLs of MCT8, in substrate recognition and translocation. Therefore, we analyzed the effects of the His-modifying reagent diethylpyrocarbonate (DEPC) and of site-directed mutagenesis of several His residues on TH transport by MCT8. Reaction of MCT8 with DEPC inhibited subsequent uptake of T-3 and T-4, whereas T3 and T-4 efflux were not inhibited. The inhibitory effect of DEPC on TH uptake was prevented in the presence of T-3 or T-4, suggesting that TH blocks access to DEPC-sensitive residues. Three putative DEPC target His residues were replaced by Ala: H192A, H260A, and H450A. The H260A and H450A mutants showed similar TH transport and DEPC sensitivity as wild-type MCT8. However, the H192A mutant showed a significant reduction in TH uptake and was insensitive to DEPC. Taken together, these results indicate that His192 is sensitive to modification by DEPC and may be located close to a putative substrate recognition site within the MCT8 protein, important for efficient TH uptake.
AB - Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). So far, functional domains within MCT8 are not well defined. Mutations in MCT8 result in severe psychomotor retardation due to impaired neuronal differentiation. One such mutation concerns His192 (H192R), located at the border of transmembrane domain (TMD) 1 and extracellular loop (ECL) 1, suggesting that this His residue is important for efficient TH transport. Here, we studied the role of different His residues, predicted within TMDs or ECLs of MCT8, in substrate recognition and translocation. Therefore, we analyzed the effects of the His-modifying reagent diethylpyrocarbonate (DEPC) and of site-directed mutagenesis of several His residues on TH transport by MCT8. Reaction of MCT8 with DEPC inhibited subsequent uptake of T-3 and T-4, whereas T3 and T-4 efflux were not inhibited. The inhibitory effect of DEPC on TH uptake was prevented in the presence of T-3 or T-4, suggesting that TH blocks access to DEPC-sensitive residues. Three putative DEPC target His residues were replaced by Ala: H192A, H260A, and H450A. The H260A and H450A mutants showed similar TH transport and DEPC sensitivity as wild-type MCT8. However, the H192A mutant showed a significant reduction in TH uptake and was insensitive to DEPC. Taken together, these results indicate that His192 is sensitive to modification by DEPC and may be located close to a putative substrate recognition site within the MCT8 protein, important for efficient TH uptake.
U2 - 10.1210/en.2012-2225
DO - 10.1210/en.2012-2225
M3 - Article
VL - 154
SP - 2525
EP - 2532
JO - Endocrinology
JF - Endocrinology
SN - 0013-7227
IS - 7
ER -