TY - JOUR
T1 - Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis
AU - Danen-Van Oorschot, Astrid A.A.M.
AU - Zhang, Ying Hui
AU - Leliveld, S. Rutger
AU - Rohn, Jennifer L.
AU - Seelen, Maud C.M.J.
AU - Bolk, Marian W.
AU - Van Zon, Arend
AU - Erkeland, Stefan J.
AU - Abrahams, Jan Pieter
AU - Mumberg, Dominik
AU - Noteborn, Mathieu H.M.
PY - 2003/7/25
Y1 - 2003/7/25
N2 - The chicken anemia virus-derived protein Apoptin induces apoptosis specifically in human tumor and transformed cells and not in normal, untransformed cells. The cell killing activity correlates with a predominantly nuclear localization of Apoptin in tumor cells, whereas in normal cells, it is detected mainly in cytoplasmic structures. To explore the role of nuclear localization for Apoptin-induced cell death in tumor cells, we employed a mutagenesis strategy. First, we demonstrated that the C terminus of Apoptin contains a bipartite-type nuclear localization signal. Strikingly, further investigation showed that Apoptin contains two different domains that induce apoptosis independently, and for both domains, we found a strong correlation between localization and killing activity. Using inhibitors, we ruled out the involvement of de novo gene transcription and translation and further showed that Apoptin itself does not have any significant transcriptional repression activity, suggesting that Apoptin exerts its effects in the nucleus by some other method. To determine whether nuclear localization is sufficient to enable Apoptin to kill normal, untransformed cells, we expressed full-length Apoptin fused to a heterologous nuclear localization signal in these cells. However, despite its nuclear localization, no apoptosis was induced, which suggests that nuclear localization per se is not sufficient for Apoptin to become active. These studies increase our understanding of the molecular pathway of Apoptin and may also shed light on the mechanism of cellular transformation.
AB - The chicken anemia virus-derived protein Apoptin induces apoptosis specifically in human tumor and transformed cells and not in normal, untransformed cells. The cell killing activity correlates with a predominantly nuclear localization of Apoptin in tumor cells, whereas in normal cells, it is detected mainly in cytoplasmic structures. To explore the role of nuclear localization for Apoptin-induced cell death in tumor cells, we employed a mutagenesis strategy. First, we demonstrated that the C terminus of Apoptin contains a bipartite-type nuclear localization signal. Strikingly, further investigation showed that Apoptin contains two different domains that induce apoptosis independently, and for both domains, we found a strong correlation between localization and killing activity. Using inhibitors, we ruled out the involvement of de novo gene transcription and translation and further showed that Apoptin itself does not have any significant transcriptional repression activity, suggesting that Apoptin exerts its effects in the nucleus by some other method. To determine whether nuclear localization is sufficient to enable Apoptin to kill normal, untransformed cells, we expressed full-length Apoptin fused to a heterologous nuclear localization signal in these cells. However, despite its nuclear localization, no apoptosis was induced, which suggests that nuclear localization per se is not sufficient for Apoptin to become active. These studies increase our understanding of the molecular pathway of Apoptin and may also shed light on the mechanism of cellular transformation.
UR - http://www.scopus.com/inward/record.url?scp=0042346377&partnerID=8YFLogxK
U2 - 10.1074/jbc.M303114200
DO - 10.1074/jbc.M303114200
M3 - Article
C2 - 12754198
AN - SCOPUS:0042346377
SN - 0021-9258
VL - 278
SP - 27729
EP - 27736
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -