In Vivo Validation of CAAS QCA-3D Coronary Reconstruction Using Fusion of Angiography and Intravascular Ultrasound (ANGUS)

JCH Schuurbiers, NG Lopez, Jurgen Ligthart, Frank Gijsen, J (Jouke) Dijkstra, PWJC (Patrick) Serruys, Ton van der Steen, Jolanda Wentzel

Research output: Contribution to journalArticleAcademicpeer-review

67 Citations (Scopus)

Abstract

Objectives: The CAAS QCA-3D system (Pie Medical Imaging BV, the Netherlands) was validated against 3D reconstructions based on fusion of angiography and intravascular ultrasound (ANGUS), allowing slice by slice validation of the lumen areas and 3D geometric values. Background: Accurate online 3D reconstruction of human coronary arteries is of outmost importance during clinical practice in the catheterization laboratory. The CHAS QCA-3D system provides technology to 3D reconstruct human coronary arteries based on two or more angiographic images, but was not validated in realistic arteries before. Methods: Ten patients were imaged using biplane angiography and an ECG gated (TomTec) intravascular ultrasound (IVUS) pullback (stepsize 0.5 mm, Boston Scientific). The coronary arteries were 3D reconstructed based on (a) fusion of biplane angiography and IVUS (ANGUS) and (b) CAAS QCA-3D using the biplane angiography images. For both systems the length, the curvature and the lumen areas at 0.5 mm spacing were calculated and compared. Results: Bland-Altman analysis indicated that the CHAS QCA-3D system underestimated the lumen areas systematically by 0.45 +/- 1.49 mm 2. The segment length was slightly underestimated by the CAAS QCA-3D system (62.1 +/- 11.3 vs. 63.2 +/- 11.4 mm; P < 0.05), while the curvature of the analyzed segments were not statistically different. Conclusions: The CAAS QCA-3D system allows 3D reconstruction of human coronary arteries based on biplane angiography. Validation against the ANGUS system showed that both the 3D geometry and lumen areas are highly correlated which makes the CHAS QCA-3D system a promising tool for applications in the catheterization laboratory and opens possibilities for computational fluid dynamics. (C) 2009 Wiley-Liss, Inc.
Original languageUndefined/Unknown
Pages (from-to)620-626
Number of pages7
JournalCatheterization and Cardiovascular Interventions
Volume73
Issue number5
DOIs
Publication statusPublished - 2009

Research programs

  • EMC COEUR-09

Cite this