TY - JOUR
T1 - Inflammation and Organ Failure Severely Affect Midazolam Clearance in Critically Ill Children
AU - Vet, Nienke
AU - Brussee, JM
AU - de Hoog, Matthijs
AU - Mooij, Miriam
AU - Verlaat, CWM
AU - Jerchel, Isabel
AU - van Schaik, Ron
AU - Koch, Birgit
AU - Tibboel, Dick
AU - Knibbe, CAJ
AU - de Wildt, Saskia
PY - 2016
Y1 - 2016
N2 - Rationale: Various in vitro, animal, and limited human adult studies suggest a profound inhibitory effect of inflammation and disease on cytochrome P-450 3A (CYP3A)-mediated drug metabolism. Studies showing this relationship in critically ill patients are lacking, whereas clearance of many CYP3A drug substrates may be decreased, potentially leading to toxicity. Objectives: To prospectively study the relationship between inflammation, organ failure, and midazolam clearance as a validated marker of CYP3A-mediated drug metabolism in critically ill children. Methods: From 83 critically ill children (median age, 5.1 mo [range, 0.02-202 mo]), midazolam plasma (n = 532), cytokine (e.g., IL-6, tumor necrosis factor-alpha), and C-reactive protein (CRP) levels; organ dysfunction scores (Pediatric Risk of Mortality II, Pediatric Index of Mortality 2, Pediatric Logistic Organ Dysfunction); and number of failing organs were prospectively collected. A population pharmacokinetic model to study the impact of inflammation and organ failure on midazolam pharmacokinetics was developed using NONMEM 7.3. Measurements and Main Results: In a two-compartmental pharmacokinetic model, body weight was the most significant covariate for clearance and volume of distribution. CRP and organ failure were significantly associated with clearance (P < 0.01), explaining both interindividual and interoccasional variability. In simulations, a CRP of 300 mg/L was associated with a 65% lower clearance compared with 10 mg/L, and three failing organs were associated with a 35% lower clearance compared with one failing organ. Conclusions: Inflammation and organ failure strongly reduce midazolam clearance, a surrogate marker of CYP3A-mediated drug metabolism, in critically ill children. Hence, critically ill patients receiving CYP3A substrate drugs may be at risk of increased drug levels and associated toxicity.
AB - Rationale: Various in vitro, animal, and limited human adult studies suggest a profound inhibitory effect of inflammation and disease on cytochrome P-450 3A (CYP3A)-mediated drug metabolism. Studies showing this relationship in critically ill patients are lacking, whereas clearance of many CYP3A drug substrates may be decreased, potentially leading to toxicity. Objectives: To prospectively study the relationship between inflammation, organ failure, and midazolam clearance as a validated marker of CYP3A-mediated drug metabolism in critically ill children. Methods: From 83 critically ill children (median age, 5.1 mo [range, 0.02-202 mo]), midazolam plasma (n = 532), cytokine (e.g., IL-6, tumor necrosis factor-alpha), and C-reactive protein (CRP) levels; organ dysfunction scores (Pediatric Risk of Mortality II, Pediatric Index of Mortality 2, Pediatric Logistic Organ Dysfunction); and number of failing organs were prospectively collected. A population pharmacokinetic model to study the impact of inflammation and organ failure on midazolam pharmacokinetics was developed using NONMEM 7.3. Measurements and Main Results: In a two-compartmental pharmacokinetic model, body weight was the most significant covariate for clearance and volume of distribution. CRP and organ failure were significantly associated with clearance (P < 0.01), explaining both interindividual and interoccasional variability. In simulations, a CRP of 300 mg/L was associated with a 65% lower clearance compared with 10 mg/L, and three failing organs were associated with a 35% lower clearance compared with one failing organ. Conclusions: Inflammation and organ failure strongly reduce midazolam clearance, a surrogate marker of CYP3A-mediated drug metabolism, in critically ill children. Hence, critically ill patients receiving CYP3A substrate drugs may be at risk of increased drug levels and associated toxicity.
U2 - 10.1164/rccm.201510-2114OC
DO - 10.1164/rccm.201510-2114OC
M3 - Article
SN - 1073-449X
VL - 194
SP - 58
EP - 66
JO - American Journal of Respiratory and Critical Care Medicine
JF - American Journal of Respiratory and Critical Care Medicine
IS - 1
ER -