TY - JOUR
T1 - Inflammation of the atherosclerotic cap and shoulder of the plaque is a common and locally observed feature in unruptured plaques of femoral and coronary arteries
AU - Pasterkamp, Gerard
AU - Schoneveld, Arjan H.
AU - Van Der Wal, Allard C.
AU - Hijnen, Dirk Jan
AU - Van Wolveren, Willem J.A.
AU - Plomp, Simon
AU - Teepen, Hans L.J.M.
AU - Borst, Cornelius
PY - 1999/1
Y1 - 1999/1
N2 - Retrospectively, plaque rupture is often colocalized with inflammation of the cap and shoulder of the atherosclerotic plaque. Local inflammation is therefore considered a potential marker for plaque vulnerability. However, high specificity of inflammation for plaque rupture is a requisite for application of inflammation markers to detect rupture-prone lesions. The objective of the present study was to investigate the prevalence and distribution (local versus general) of inflammatory cells in nonruptured atherosclerotic plaques. The cap and shoulder of the plaque were stained for the presence of macrophages and T lymphocytes in 282 and 262 cross sections obtained from 74 coronary and 50 femoral arteries, respectively. From most cases, 2 atherosclerotic arteries were studied to gain insight into the local and systemic distribution of the inflammatory process. In 45% and 41% of all cross sections, staining for macrophages was observed in the femoral and coronary arteries, respectively. Rupture of the fibrous cap was observed in 2 femoral and 3 coronary artery segments and was always colocalized with inflammatory cells. At least 1 cross section stained positively for CD68 or acid phosphatase in 84% and 71% of all femoral and coronary arteries, respectively. Only 1 femoral and 6 coronary arteries revealed a positive stain for CD68 in all investigated segments. Inflammation of the cap and shoulder of the plaque is a common feature, locally observed, in atherosclerotic femoral and coronary arteries. The high prevalence of local inflammatory responses should be considered if they are used as a diagnostic target to detect vulnerable, rupture-prone lesions.
AB - Retrospectively, plaque rupture is often colocalized with inflammation of the cap and shoulder of the atherosclerotic plaque. Local inflammation is therefore considered a potential marker for plaque vulnerability. However, high specificity of inflammation for plaque rupture is a requisite for application of inflammation markers to detect rupture-prone lesions. The objective of the present study was to investigate the prevalence and distribution (local versus general) of inflammatory cells in nonruptured atherosclerotic plaques. The cap and shoulder of the plaque were stained for the presence of macrophages and T lymphocytes in 282 and 262 cross sections obtained from 74 coronary and 50 femoral arteries, respectively. From most cases, 2 atherosclerotic arteries were studied to gain insight into the local and systemic distribution of the inflammatory process. In 45% and 41% of all cross sections, staining for macrophages was observed in the femoral and coronary arteries, respectively. Rupture of the fibrous cap was observed in 2 femoral and 3 coronary artery segments and was always colocalized with inflammatory cells. At least 1 cross section stained positively for CD68 or acid phosphatase in 84% and 71% of all femoral and coronary arteries, respectively. Only 1 femoral and 6 coronary arteries revealed a positive stain for CD68 in all investigated segments. Inflammation of the cap and shoulder of the plaque is a common feature, locally observed, in atherosclerotic femoral and coronary arteries. The high prevalence of local inflammatory responses should be considered if they are used as a diagnostic target to detect vulnerable, rupture-prone lesions.
UR - http://www.scopus.com/inward/record.url?scp=0032928132&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.19.1.54
DO - 10.1161/01.ATV.19.1.54
M3 - Article
C2 - 9888866
AN - SCOPUS:0032928132
SN - 1079-5642
VL - 19
SP - 54
EP - 58
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 1
ER -