Spred1 is required for synaptic plasticity and hippocampus-dependent learning

Ellen Denayer, Tariq Ahmed, Hilde Brems, Geeske Van Woerden, Nils Zuiderveen Borgesius, Zsuzsanna Callaerts-Vegh, Akihiko Yoshimura, Dieter Hartmann, Ype Elgersma, Rudi D'Hooge, Eric Legius*, Detlef Balschun*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

82 Citations (Scopus)
1 Downloads (Pure)

Abstract

Germline mutations in SPRED1, a negative regulator of Ras, have been described in a neurofibromatosis type 1 (NF1)-like syndrome (NFLS) that included learning difficulties in some affected individuals. NFLS belongs to the group of phenotypically overlapping neurocardio-facial-cutaneous syndromes that are all caused by germ line mutations in genes of the Ras/mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) pathway and that present with some degree of learning difficulties or mental retardation. We investigated hippocampus-dependent learning and memory as well as synaptic plasticity in Spred1-/- mice, an animal model of this newly discovered human syndrome. Spred1-/- mice show decreased learning and memory performance in the Morris water maze and visual-discrimination T-maze, but normal basic neuromotor and sensory abilities. Electrophysiological recordings on brain slices from these animals identified defects in short- and long-term synaptic hippocampal plasticity, including a disequilibrium between long-term potentiation (LTP) and long-term depression in CA1 region. Biochemical analysis, 4 h after LTP induction, demonstrated increased ERK-phosphorylation in Spred1-/- slices compared with those of wild-type littermates. This indicates that deficits in hippocampusdependent learning and synaptic plasticity induced by SPRED1 deficiency are related to hyperactivation of the Ras/ERK pathway.

Original languageEnglish
Pages (from-to)14443-14449
Number of pages7
JournalJournal of Neuroscience
Volume28
Issue number53
DOIs
Publication statusPublished - 31 Dec 2008

Fingerprint

Dive into the research topics of 'Spred1 is required for synaptic plasticity and hippocampus-dependent learning'. Together they form a unique fingerprint.

Cite this