TY - JOUR
T1 - Let’s get in sync
T2 - current standing and future of AI-based detection of patient-ventilator asynchrony
AU - Rietveld, Thijs P.
AU - van der Ster, Björn J.P.
AU - Schoe, Abraham
AU - Endeman, Henrik
AU - Balakirev, Anton
AU - Kozlova, Daria
AU - Gommers, Diederik A.M.P.J.
AU - Jonkman, Annemijn H.
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025/3/21
Y1 - 2025/3/21
N2 - Background: Patient-ventilator asynchrony (PVA) is a mismatch between the patient’s respiratory drive/effort and the ventilator breath delivery. It occurs frequently in mechanically ventilated patients and has been associated with adverse events and increased duration of ventilation. Identifying PVA through visual inspection of ventilator waveforms is highly challenging and time-consuming. Automated PVA detection using Artificial Intelligence (AI) has been increasingly studied, potentially offering real-time monitoring at the bedside. In this review, we discuss advances in automatic detection of PVA, focusing on developments of the last 15 years. Results: Nineteen studies were identified. Multiple forms of AI have been used for the automated detection of PVA, including rule-based algorithms, machine learning and deep learning. Three licensed algorithms are currently reported. Results of algorithms are generally promising (average reported sensitivity, specificity and accuracy of 0.80, 0.93 and 0.92, respectively), but most algorithms are only available offline, can detect a small subset of PVAs (focusing mostly on ineffective effort and double trigger asynchronies), or remain in the development or validation stage (84% (16/19 of the reviewed studies)). Moreover, only in 58% (11/19) of the studies a reference method for monitoring patient’s breathing effort was available. To move from bench to bedside implementation, data quality should be improved and algorithms that can detect multiple PVAs should be externally validated, incorporating measures for breathing effort as ground truth. Last, prospective integration and model testing/finetuning in different ICU settings is key. Conclusions: AI-based techniques for automated PVA detection are increasingly studied and show potential. For widespread implementation to succeed, several steps, including external validation and (near) real-time employment, should be considered. Then, automated PVA detection could aid in monitoring and mitigating PVAs, to eventually optimize personalized mechanical ventilation, improve clinical outcomes and reduce clinician’s workload.
AB - Background: Patient-ventilator asynchrony (PVA) is a mismatch between the patient’s respiratory drive/effort and the ventilator breath delivery. It occurs frequently in mechanically ventilated patients and has been associated with adverse events and increased duration of ventilation. Identifying PVA through visual inspection of ventilator waveforms is highly challenging and time-consuming. Automated PVA detection using Artificial Intelligence (AI) has been increasingly studied, potentially offering real-time monitoring at the bedside. In this review, we discuss advances in automatic detection of PVA, focusing on developments of the last 15 years. Results: Nineteen studies were identified. Multiple forms of AI have been used for the automated detection of PVA, including rule-based algorithms, machine learning and deep learning. Three licensed algorithms are currently reported. Results of algorithms are generally promising (average reported sensitivity, specificity and accuracy of 0.80, 0.93 and 0.92, respectively), but most algorithms are only available offline, can detect a small subset of PVAs (focusing mostly on ineffective effort and double trigger asynchronies), or remain in the development or validation stage (84% (16/19 of the reviewed studies)). Moreover, only in 58% (11/19) of the studies a reference method for monitoring patient’s breathing effort was available. To move from bench to bedside implementation, data quality should be improved and algorithms that can detect multiple PVAs should be externally validated, incorporating measures for breathing effort as ground truth. Last, prospective integration and model testing/finetuning in different ICU settings is key. Conclusions: AI-based techniques for automated PVA detection are increasingly studied and show potential. For widespread implementation to succeed, several steps, including external validation and (near) real-time employment, should be considered. Then, automated PVA detection could aid in monitoring and mitigating PVAs, to eventually optimize personalized mechanical ventilation, improve clinical outcomes and reduce clinician’s workload.
UR - http://www.scopus.com/inward/record.url?scp=105000513377&partnerID=8YFLogxK
U2 - 10.1186/s40635-025-00746-8
DO - 10.1186/s40635-025-00746-8
M3 - Review article
C2 - 40119215
AN - SCOPUS:105000513377
SN - 2197-425X
VL - 13
JO - Intensive Care Medicine Experimental
JF - Intensive Care Medicine Experimental
IS - 1
M1 - 39
ER -