Lexicon-Based Sentiment Analysis by Mapping Conveyed Sentiment to Intended Sentiment

Alexander Hogenboom, MA Bal, Flavius Frasincar, DM Bal, U Kaymak, Franciska de Jong

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)


As consumers nowadays generate increasingly more content describing their experiences with, e.g., products and brands in various languages, information systems monitoring a universal, language-independent measure of people's intended sentiment are crucial for today's businesses. In order to facilitate sentiment analysis of user-generated content, we propose to map sentiment conveyed by unstructured natural language text to universal star ratings, capturing intended sentiment. For these mappings, we consider a monotonically increasing step function, a na\"{i}ve Bayes method, and a support vector machine. We demonstrate that the way in which natural language reveals intended sentiment differs across our data sets of Dutch and English texts. Additionally, the results of our experiments on modelling the relation between conveyed sentiment and intended sentiment suggest that language-specific sentiment scores can separate universal classes of intended sentiment from one another to a limited extent.
Original languageEnglish
Pages (from-to)125-147
Number of pages23
JournalInternational Journal of Web Engineering and Technology
Issue number2
Publication statusPublished - 2014

Research programs

  • EUR ESE 32
  • ESHCC Studio


Dive into the research topics of 'Lexicon-Based Sentiment Analysis by Mapping Conveyed Sentiment to Intended Sentiment'. Together they form a unique fingerprint.

Cite this