TY - GEN
T1 - Local activation time estimation in atrial electrograms using cross-correlation over higher-order neighbors
AU - Kölling, Bart
AU - Abdi, Bahareh
AU - de Groot, Natasja M.S.
AU - Hendriks, Richard C.
N1 - Publisher Copyright: © 2021 European Signal Processing Conference, EUSIPCO. All rights reserved.
PY - 2021/1/24
Y1 - 2021/1/24
N2 - Atrial electrograms are often used to gain understanding on the development of atrial fibrillation (AF). Using such electrograms, cardiologists can reconstruct how the depolarization wave-front propagates across the atrium. Knowing the exact moment at which the depolarization wavefront in the tissue reaches each electrode is an important aspect of such reconstruction. A common way to determine the LAT is based on the steepest deflection (SD) of the individual electrograms. However, the SD annotates each electrogram individually and is expected to be more prone to errors compared to approaches that would employ the data from the surrounding electrodes to estimate the LAT. As electrograms from neighboring electrodes tend to have rather similar morphology up to a delay, we propose in this paper to use the cross-correlation to find the pair-wise relative delays between electrograms. Instead of only using the direct neighbors we consider the array as a graph and involve higher order neighbors as well. Using a least-squares method, the absolute LATs can then be estimated from the calculated pair-wise relative delays. Simulated and clinically recorded electrograms are used to evaluate the proposed approach. From the simulated data it follows that the proposed approach outperforms the SD approach.
AB - Atrial electrograms are often used to gain understanding on the development of atrial fibrillation (AF). Using such electrograms, cardiologists can reconstruct how the depolarization wave-front propagates across the atrium. Knowing the exact moment at which the depolarization wavefront in the tissue reaches each electrode is an important aspect of such reconstruction. A common way to determine the LAT is based on the steepest deflection (SD) of the individual electrograms. However, the SD annotates each electrogram individually and is expected to be more prone to errors compared to approaches that would employ the data from the surrounding electrodes to estimate the LAT. As electrograms from neighboring electrodes tend to have rather similar morphology up to a delay, we propose in this paper to use the cross-correlation to find the pair-wise relative delays between electrograms. Instead of only using the direct neighbors we consider the array as a graph and involve higher order neighbors as well. Using a least-squares method, the absolute LATs can then be estimated from the calculated pair-wise relative delays. Simulated and clinically recorded electrograms are used to evaluate the proposed approach. From the simulated data it follows that the proposed approach outperforms the SD approach.
UR - http://www.scopus.com/inward/record.url?scp=85099279514&partnerID=8YFLogxK
U2 - 10.23919/Eusipco47968.2020.9287434
DO - 10.23919/Eusipco47968.2020.9287434
M3 - Conference proceeding
SN - 9789082797053
T3 - European Signal Processing Conference
SP - 905
EP - 909
BT - 28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
PB - European Signal Processing Conference, EUSIPCO
T2 - 28th European Signal Processing Conference, EUSIPCO 2020
Y2 - 24 August 2020 through 28 August 2020
ER -