Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning

Alice Geminiani*, Claudia Casellato, Henk Jan Boele, Alessandra Pedrocchi, Chris I. De Zeeuw, Egidio D'Angelo*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Downloads (Pure)


According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones- more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.

Original languageEnglish
Article numbere1011277
JournalPLoS Computational Biology
Issue number4 April
Publication statusPublished - Apr 2024

Bibliographical note

Publisher Copyright:
© 2024 Public Library of Science. All rights reserved.


Dive into the research topics of 'Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning'. Together they form a unique fingerprint.

Cite this