TY - JOUR
T1 - Molecular mechanism of violacein-mediated human leukemia cell death
AU - Ferreira, Carmen Veríssima
AU - Bos, Carina L.
AU - Versteeg, Henri H.
AU - Justo, Giselle Z.
AU - Durán, Nelson
AU - Peppelenbosch, Maikel P.
PY - 2004/9/1
Y1 - 2004/9/1
N2 - Violacein, a pigment isolated from Chromobacterium violaceum in the Amazon River, presents diverse biologic properties and attracts interest as a consequence of its antileukemic activity. Elucidation of the molecular mechanism mediating this activity will provide further relevant information for understanding its effects on the cellular physiology of untransformed cells and for considering its possible clinical application. Here, we show that violacein causes apoptosis in HL60 leukemic cells but is ineffective in this respect in other types of leukemia cells or in normal human lymphocytes and monocytes. Violacein cytotoxicity in HL60 cells was preceded by activation of caspase 8, transcription of nuclear factor κB (NF-κB) target genes, and p38 mitogen-activated protein (MAP) kinase activation. Thus, violacein effects resemble tumor necrosis factor α (TNF-α) signal transduction in these cells. Accordingly, infliximab, an antibody that antagonizes TNF-α-induced signaling abolished the biologic activity of violacein. Moreover, violacein directly activated TNF receptor 1 signaling, because a violacein-dependent association of TNF receptor-associated factor 2 (TRAF2) to this TNF receptor was observed in coimmunoprecipitation experiments. Hence, violacein represents the first member of a novel class of cytotoxic drugs mediating apoptosis of HL60 cells by way of the specific activation of TNF receptor 1.
AB - Violacein, a pigment isolated from Chromobacterium violaceum in the Amazon River, presents diverse biologic properties and attracts interest as a consequence of its antileukemic activity. Elucidation of the molecular mechanism mediating this activity will provide further relevant information for understanding its effects on the cellular physiology of untransformed cells and for considering its possible clinical application. Here, we show that violacein causes apoptosis in HL60 leukemic cells but is ineffective in this respect in other types of leukemia cells or in normal human lymphocytes and monocytes. Violacein cytotoxicity in HL60 cells was preceded by activation of caspase 8, transcription of nuclear factor κB (NF-κB) target genes, and p38 mitogen-activated protein (MAP) kinase activation. Thus, violacein effects resemble tumor necrosis factor α (TNF-α) signal transduction in these cells. Accordingly, infliximab, an antibody that antagonizes TNF-α-induced signaling abolished the biologic activity of violacein. Moreover, violacein directly activated TNF receptor 1 signaling, because a violacein-dependent association of TNF receptor-associated factor 2 (TRAF2) to this TNF receptor was observed in coimmunoprecipitation experiments. Hence, violacein represents the first member of a novel class of cytotoxic drugs mediating apoptosis of HL60 cells by way of the specific activation of TNF receptor 1.
UR - http://www.scopus.com/inward/record.url?scp=4444302229&partnerID=8YFLogxK
U2 - 10.1182/blood-2004-02-0594
DO - 10.1182/blood-2004-02-0594
M3 - Article
C2 - 15130948
AN - SCOPUS:4444302229
SN - 0006-4971
VL - 104
SP - 1459
EP - 1464
JO - Blood
JF - Blood
IS - 5
ER -