Mouse models to study polycystic ovary syndrome: A possible link between metabolism and ovarian function?

Leonie Houten, Jenny Visser

Research output: Contribution to journalArticleAcademicpeer-review

92 Citations (Scopus)

Abstract

Polycystic ovary syndrome (PCOS) is the most common cause of female infertility affecting 6-8% of women worldwide. PCOS is characterized by two of the following three criteria: clinical or biochemical hyperandrogenism, oligo- or amenorrhea, and polycystic ovaries (PCO). In addition, women with PCOS are often obese and insulin resistant, and are at risk for type 2 diabetes and cardiovascular disease. The etiology of PCOS remains unknown. Therefore, several animal models for PCOS have been generated to gain insight into the etiology and development of the PCOS-associated phenotypes. Androgens are considered the main culprit of PCOS, and therefore, androgenization of animals is the most frequently used approach to induce symptoms that resemble PCOS. Prenatal or prepubertal androgen treatment results in many characteristics of human PCOS, including anovulation, cyst-like follicles, elevated luteinizing hormone (LH) levels, increased adiposity, and insulin insensitivity. However, PCOS has a heterogeneous presentation, and therefore it is difficult to generate a model that exactly reproduces the reproductive and metabolic phenotypes observed in women with PCOS. In this review, we discuss several mouse models for PCOS, and compare the reproductive and/or metabolic phenotypes observed in several androgen-induced models as well as in several genetic models. (C) 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Original languageUndefined/Unknown
Pages (from-to)32-43
Number of pages12
JournalReproductive Biology
Volume14
Issue number1
DOIs
Publication statusPublished - 2014

Research programs

  • EMC MM-01-39-04

Cite this