Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis

Marvin van Luijn, Karim Kreft, ML Jongsma, Steven Mes, Annet Wierenga - Wolf, Marjan van Meurs, Marie-José Melief, R van der Kant, L Janssen, H Janssen, RS Tan, JJ Priatel, J Neefjes, Jon Laman, Rogier Hintzen

Research output: Contribution to journalArticleAcademicpeer-review

47 Citations (Scopus)


C-type lectins are key players in immune regulation by driving distinct functions of antigen-presenting cells. The C-type lectin CLEC16A gene is located at 16p13, a susceptibility locus for several autoimmune diseases, including multiple sclerosis. However, the function of this gene and its potential contribution to these diseases in humans are poorly understood. In this study, we found a strong upregulation of CLEC16A expression in the white matter of multiple sclerosis patients (n = 14) compared to non-demented controls (n = 11), mainly in perivascular leukocyte infiltrates. Moreover, CLEC16A levels were significantly enhanced in peripheral blood mononuclear cells of multiple sclerosis patients (n = 69) versus healthy controls (n = 46). In peripheral blood mononuclear cells, CLEC16A was most abundant in monocyte-derived dendritic cells, in which it strongly co-localized with human leukocyte antigen class II. Treatment of these professional antigen-presenting cells with vitamin D, a key protective environmental factor in multiple sclerosis, downmodulated CLEC16A in parallel with human leukocyte antigen class II. Knockdown of CLEC16A in distinct types of model and primary antigen-presenting cells resulted in severely impaired cytoplasmic distribution and formation of human leucocyte antigen class II-positive late endosomes, as determined by immunofluorescence and electron microscopy. Mechanistically, CLEC16A participated in the molecular machinery of human leukocyte antigen class II-positive late endosome formation and trafficking to perinuclear regions, involving the dynein motor complex. By performing co-immunoprecipitations, we found that CLEC16A directly binds to two critical members of this complex, RILP and the HOPS complex. CLEC16A silencing in antigen-presenting cells disturbed RILP-mediated recruitment of human leukocyte antigen class II-positive late endosomes to perinuclear regions. Together, we identify CLEC16A as a pivotal gene in multiple sclerosis that serves as a direct regulator of the human leukocyte antigen class II pathway in antigen-presenting cells. These findings are a first step in coupling multiple sclerosis-associated genes to the regulation of the strongest genetic factor in multiple sclerosis, human leukocyte antigen class II.
Original languageUndefined/Unknown
Pages (from-to)1531-1547
Number of pages17
Publication statusPublished - 2015

Research programs

  • EMC MM-02-72-02
  • EMC MM-04-44-02

Cite this