TY - JOUR
T1 - Neonatal development of the rat visual cortex
T2 - Synaptic function of GABAA receptor α subunits
AU - Bosman, Laurens W.J.
AU - Brussard, Arjen B.
PY - 2002/11/15
Y1 - 2002/11/15
N2 - Each GABAA receptor consists of two α and three other subunits. The spatial and temporal distribution of different α subunit isomeres expressed by the CNS is highly regulated. Here we study changes in functional contribution of different α subunits during neonatal development in rat visual cortex. First, we characterized postsynaptic α subunit expression in layer II-III neurons, using subunit-specific pharmacology combined with electrophysiological recordings in acutely prepared brain slices. This showed clear developmental downregulation of the effects of bretazenil (1 μm) and marked upregulation of the effect of 100 nM of zolpidem on the decay of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the concentrations used we interpret this as downregulation of the synaptic α3 and upregulation of α subunit. Furthermore, the effect of furosemide, being indicative of the functional contribution of α4, was increased between postnatal days 6 and 21. Our second aim was to study the effects of plasticity in α subunit expression on decay properties of GABAergic IPSCs. We found that bretazenil-sensitive IPSCs have the longest decay time constant in juvenile neurons. In mature neurons, zolpidem- and furosemide-sensitive IPSCs have relatively fast decay kinetics, whereas bretazenil-sensitive IPSCs decay relatively slowly. Analysis of α1 deficient mice and α1 antisense oligonucleotide deletion in rat explants showed similar results to those obtained by zolpidem application. Thus, distinct α subunit contributions create heterogeneity in developmental acceleration of IPSC decay in neocortex.
AB - Each GABAA receptor consists of two α and three other subunits. The spatial and temporal distribution of different α subunit isomeres expressed by the CNS is highly regulated. Here we study changes in functional contribution of different α subunits during neonatal development in rat visual cortex. First, we characterized postsynaptic α subunit expression in layer II-III neurons, using subunit-specific pharmacology combined with electrophysiological recordings in acutely prepared brain slices. This showed clear developmental downregulation of the effects of bretazenil (1 μm) and marked upregulation of the effect of 100 nM of zolpidem on the decay of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the concentrations used we interpret this as downregulation of the synaptic α3 and upregulation of α subunit. Furthermore, the effect of furosemide, being indicative of the functional contribution of α4, was increased between postnatal days 6 and 21. Our second aim was to study the effects of plasticity in α subunit expression on decay properties of GABAergic IPSCs. We found that bretazenil-sensitive IPSCs have the longest decay time constant in juvenile neurons. In mature neurons, zolpidem- and furosemide-sensitive IPSCs have relatively fast decay kinetics, whereas bretazenil-sensitive IPSCs decay relatively slowly. Analysis of α1 deficient mice and α1 antisense oligonucleotide deletion in rat explants showed similar results to those obtained by zolpidem application. Thus, distinct α subunit contributions create heterogeneity in developmental acceleration of IPSC decay in neocortex.
UR - http://www.scopus.com/inward/record.url?scp=0037112392&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2002.026534
DO - 10.1113/jphysiol.2002.026534
M3 - Review article
C2 - 12433958
AN - SCOPUS:0037112392
SN - 0022-3751
VL - 545
SP - 169
EP - 181
JO - Journal of Physiology
JF - Journal of Physiology
IS - 1
ER -