Abstract
In wild-type mice, T-cell receptor (TCR) gamma delta(+) cells differentiate along a CD4 CD8 double-negative (DN) pathway whereas TCR alpha beta(+) cells differentiate along the double-positive (DP) pathway. In the human postnatal thymus (PNT), DN, DP and single-positive (SP) TCR gamma delta(+) populations are present. Here, the precursor-progeny relationship of the various PNT TCR gamma delta(+) populations was studied and the role of the DP TCR gamma delta(+) population during T-cell differentiation was elucidated. We demonstrate that human TCR gamma delta(+) cells differentiate along two pathways downstream from an immature CD1(+) DN TCR gamma delta(+) precursor: a Notch-independent DN pathway generating mature DN and CD8 alpha alpha SP TCR gamma delta(+) cells, and a Notch-dependent, highly proliferative DP pathway generating immature CD4 SP and subsequently DP TCR gamma delta(+) populations. DP TCR gamma delta(+) cells are actively rearranging the TCR alpha locus, and differentiate to TCR- DP cells, to CD8 alpha beta SP TCR gamma delta(+) cells and to TCR alpha beta(+) cells. Finally, we show that the gamma delta subset of T-cell acute lymphoblastic leukemias (T-ALL) consists mainly of CD4 SP or DP phenotypes carrying significantly more activating Notch mutations than DN T-ALL. The latter suggests that activating Notch mutations in TCR gamma delta(+) thymocytes induce proliferation and differentiation along the DP pathway in vivo. Leukemia (2012) 26, 127-138; doi:10.1038/leu.2011.324; published online 4 November 2011
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 127-138 |
Number of pages | 12 |
Journal | Leukemia |
Volume | 26 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 |
Research programs
- EMC MM-02-72-01
- EMC MM-02-72-03